524 resultados para Logistica layout LRP progettazione trasferimento CAD CO2
Resumo:
一种超临界CO2流体干燥制备纳米ZrO2的方法是将氨水加入硝酸氧锆水溶液中,调节pH值到5-10,陈化,抽滤,用乙醇置换凝胶中的水,得醇凝胶;超临界CO2流体连续通过醇凝胶,含有乙醇的CO2分离器,乙醇析出回收,CO2循环利用,待分离器中不再有乙醇析出时得到原粉;将原粉升温至673-1073K,保温,冷却,得到ZrO2粉体。本发明具有生产成本,工艺简单,容易控制,易于实现工业化的优点。
Resumo:
一种CO#-[2]-CH#-[4]共汽化制取合成气的方法是电源向等离子发生装置提供能量,在氩气为载气的条件下,使等离子体装置产生温度为1200K-1500K的高温裂解区,将体积比为1-3∶1的CO#-[2]和CH#-[4]混合气通入高温裂解区,得到由H#-[2]与CO组成的合成原料气;其中电源能量、氩气流量和混合气流量的比值为1KW∶5-20L/min∶1-100L/min。本发明具有工艺简单、设备小、污染小、投资少、原料利用率和合成效率高等优点。
Resumo:
一种用超临界CO↓[2]制取高纯黄腐酸的方法,采用泥炭、褐煤和风化煤为原料,经化学反应及抽提后,固液分离;分离的液体再用超临界CO↓[2]抽提;抽提液去除夹带剂后经干燥得到高纯度黄腐酸。本发明首次采用化学反应与超临界抽提相结合的方法,既增加了黄腐酸抽提率,又避免了在制取过程中黄腐酸的损失和结构破坏,而且其纯度极高。
Resumo:
A novel dissolving process for chitin and chitosan has been developed by using the ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim]Cl) as a solvent, and a novel application of chitin and chitosan as substitutes for amino-functionalized synthetic polymers for capturing and releasing CO2 has also been exploited based on this processing strategy.
Resumo:
一种CO↓[2]气肥及其制备方法,气肥由固体硫酸(一份植物纤维素加0.2-5份工业硫酸)与当量的碳酸盐混合而成,固体硫酸由1份植物纤维素、0.2-5份工业硫酸制成。本发明成本低廉,安全简便,符合中国国情。
Resumo:
Copolymerization of carbon dioxide and propylene oxide was carried out employing (RC6H4COO)(3)Y/glycerin/ZnEt2 (R = -H, -CH3, NO2, -OH) ternary catalyst systems. The feature of yttrium carboxylates (ligand, substituent and its position on the aromatic ring) is of great importance in the final copolymerization. Appropriate design of substituent and position of the ligand in benzoate-based yttrium complex can adjust the microstructure of aliphatic polycarbonate in a moderate degree, where the head-to-tail linkage in the copolymer is adjustable from 68.4 to 75.4%. The steric factor of the ligand in the yttrium complex is crucial for the molecular weight distribution of the copolymer, probably due to the fact that the substituent at 2 and 4-position would disturb the coordination or insertion of the monomer, lead the copolymer with broad molecular distribution. Based on the study of ultraviolet-visible spectra of the ternary catalyst in various solvents, it seems that the absorption band at 240-255 nm be closely related to the active species of the rare earth ternary catalysts.