441 resultados para self-assembled semiconductor quantum dot


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembled monolayer of cystamine was prepared on gold electrode and 3,4-dihydroxybenzoic acid (DHBA) was electrochemically deposited on cystamine surface as a functional group by electrostatic adsorption, namely, molecular deposition. It shows that the MD/SAM structure has a higher stability, and E-1/2 of the DBAH in MD/SAM shifts more negative than that of on naked gold electrode, The n-decanethiol was also used to fill defects in MD/SAM, it results in much better cyclic voltermmetric behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled monolayers of 1-teradecanethiol on gold were characterized by means of FTIR-ATR measurements, XPS and contact angle measurements. Linear dichroism measurements using FTIR-ATR are used to estimate the orientation of the alkyl chains. An equation for calculating the orientation angles of the alkyls chains was deduced. (C) 1998 Elsevier Science Limited. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A composite film containing heteropolyanion was fabricated on gold by attaching the Keggin-type heteropolyanion, PMo12O403- on a 4-aminothiophenol SAM via Au-S bonding. Reflection FTIR, cyclic voltammetry and XPS were used for the characterization of the composite film. Reflection FTIR studies indicate that there is some Coulombic interaction between PMo12O403- and the surface amino group in the composite film, which greatly improves the film stability and prevents effectively the destructive intermolecular aggregation. The composite him shows three reversible redox couples within the pH range pH less than or equal to 7.0, attributed to three two-electron and two-proton electrochemical reduction-oxidation processes of PMo12O403-. Compared with PMo12O403- in the solution, the PMo12O403- of the composite film electrode can exist in a larger pH range, and shows smaller peak-to-peak separation, and more reversible reaction kinetics. Moreover, the composite him obtained shows a good catalytic activity for the reduction of BrO3-. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

4-Pyridyl hydroquinone on a platinum electrode adsorbs through the pyridine nitrogen forming stable self-assembled layers. The electrocatalytical oxidation of hydrazines was performed by the modified electrode. The overpotential of hydrazines was decreased markedly at the self-assembled monolayer (SAM) electrode. The mechanism of hydrazine oxidation was also investigated. Amperometric detection of hydrazine under zero potential (vs Ag\AgCI\sat. KCl) was exhibited by the SAM electrode used as an electrochemical detector in a flow system. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the self-assembled monolayer (SAM) of a thiol-functionalized viologen modified gold electrode, cytochrome c (cyt c) exhibits a quasi-reversible electrochemical reaction. The heterogeneous electron transfer rate constant of cyt c in 0.1 mol/L phosphate buffer solution(pH 6.96) is 0.164 cm.s(-1) at 500 mV/s. The adsorbed cyt c on the viologen SAM forms a closely packed monolayer, whose average electron transfer rate is 4.85 s(-1) in the scan range of 50 to 500 mV/s. These results suggest that the SAM of viologen-thiol is a relatively stable, ordered and well-behaved monolayer from an electrochemical standpoint and it promotes the electron transfer process of biomolecules on electrode surface well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A paint-freeze method for preparing self-assembled alkanethiol/phospholipid bilayers on a gold surface has been described (by cyclic voltammetry, a.c impedance, polarized FTIR-ATR) to be well-ordered and packed, stable, solvent-free bilayers. The lipid order parameter was 0.67, calculated from the dichroic ratio, consistent with a well-ordered lipid film in which the methylene groups have segmental flexibility and are disordered to a degree which is typical for a lipid bilayer in the liquid-crystalline phase. Such a supported membrane provides a useful way for studies in biophysics, physiology and electrochemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel kind of electroactive self-assembled monolayer (SAM) has been successfully prepared through the following procedure: (1) formation of inclusion complexes (denoted as CD/C8VC10SH) between N-(n-octyl)-N'-(10-mercaptodecyl)-4,4'-bipyridinium dibromide (C8VC10SH) and alpha-, beta-cyclodextrin (CD) under a mild condition; (2) spontaneous formation of SAM of CD/C8VC10SH on gold electrodes at room temperature. High-resolution H-1-NMR spectrum was used to confirm the formation of CD/C8VC10SH. Cyclic voltammetry was used to characterize the redox behavior of the resulting monolayers and chronoamperometry and electrochemical impedance spectroscopy to characterize their electron transfer kinetics. It was found that the redox sites in SAM of CD/C8VC10SH are effectively diluted, with a larger electron transfer rate constant than that of SAM of C8VC10SH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the binding characteristics of double-stranded DNA to self-assembled monolayers (SAMs) containing viologen groups formed on the surface of gold electrodes via Au-S bonds. The positive charged and hydrophobic surfaces of the viologen SAMs modified gold electrodes are suitable to bind strongly dth DNA, whose interactions to solution DNA and adsorbed DNA both lead to positive shifts (22.5 mV and 65 mV, respectively) in the first redox potential ci viologen centers, indicating that the main interaction is from a hydrophobic interaction. Meanwhile, the binding of DNA strongly affects the kinetics of electron transfer of the viologen group so that the separation of anodic and cathodic peak potentials becomes larger and the heterogeneous electron transfer constant becomes smaller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation and cyclic voltammetric behaviors of self assembled monolayers (SAMs) containing electroactive viologen group have been investigated. Treatment of this viologen SAM with solutions of alkanethiols remits in replacing the electroactive third, shifting negatively its formal potentials and decreasing its heterogeneous elixtron transfer constants along with the immersion time. The aim of the work is to understand the exchange regularity of the mixed SANK on gold electrode surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monolayers of biological compounds including redox proteins and enzymes, and phospholipids have been immobilized on a gold electrode surface through self-assembling. These proteins and enzymes, such as cytochrome c, cytochrome c oxidase and horseradish peroxidase (HRP), immobilized covalently to the self-assembled monolayers (SAMs) of 3-mercaptopropionic acid on a gold electrode, communicate directly electrons with the electrode surface without mediators and keep their physiological activities. The electron transfer of HRP with the gold electrode can also be mediated by the alkanethiol SAMs with electroactive group viologens on the gold electrode surface. All these direct electrochemistries of proteins and enzymes might offer an opportunity to build a third generation of biosensors without mediators for analytes, such as H2O2, glucose and cholesterol. Monensin and valinomycin have been incorporated into the bilayers on the gold electrode consisting of the SAMs of alkanethiol and a lipid monolayer, which have high selectivity for monovalent ions, and the resulting Na+ or K+ sensor has a wide linear range and high stability. These self-assembly systems provide a good mimetic model for studying the physiological function of a membrane and its associated enzyme. (C) 1997 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behavior of the electroactive self-assembled monolayers (SAMs) of thiol-functionalized viologen, CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is a viologen group, on the gold electrodes is examined by cyclic voltammetry and electrochemical a.c. impedance. A monolayer of viologen is immobilized on the gold electrode surface via the Au-S bond and the normal potentials corresponding to the two successive one-electron transfer processes of the viologen active centers are -310 mV and -652 mV (vs. Ag/AgCl) in 0.1 mol l(-1) phosphate buffer solution (pH 6.96) respectively. These results suggest that the viologen SAMs are stable and well-behaved monolayers. The experimental impedance data corresponding to different forms of viologen group have been fitted to equivalent electrical circuits, and the surface capacitances and resistances have been given. The heterogenous electron transfer rates of the first and the second redox processes are 7.57 s(-1) and 1.49 s(-1) respectively through a.c. impedance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A stable, well-behaved self-assembled monolayer (SAM) of viologen-functionalized thiol was used to immobilize and electrically connect horseradish peroxidase (HRP) at gold electrode. Viologen groups in SAMs facilitated the electron transfer from the electrode to the protein active site so that HRP exhibited a quasi-reversible redox behavior. HRP adsorbed in the SAMs is very stable, and close to a monolayer with the surface coverage of 6.5 x 10(-11) mol/cm(2). The normal potential of HRP is -580 mV vs Ag/AgCl corresponding to ferri/ferro active center and the standard electron transfer rate constant is 3.41 s(-1) in 0.1 M phosphate buffer solution (pH 7.1). This approach shows a great promise for designing enzyme electrodes with other redox proteins and practical use in tailoring a variety of amperometric biosensor devices. Copyright (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gold electrodes coated by n-alkanethiol with various chain lengths were used to study the permeability of uric acid, ascorbic acid, 4-aminophenol, paracetanol and phenacetin by means of linear sweep voltammetry. The results show that the optimum chain length is n=10. The improvements in the selectivity and the stability of the amperometric detection of these compounds in a flow stream were obtained by n-alkanethiol self assembled monolayers modified electrodes based on their differences in the hydrophobicity and the permeability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monolayer of cytochrome c oxidase maintaining physiological activity and attached covalently to the self-assembled monolayers of 3-mercaptopropionic acid (MPA) on a gold electrode was obtained. The results of cyclic voltammetry show that direct electron transfer between cytochrome c oxidase and the electrode surface is a fast and diffusionless process. MPA has a dual role as both electrode modifier and the bridging molecule which: keeps cytochrome c oxidase at an appropriate orientation without denaturation and enables direct electron transfer between the protein and the modified electrode. Immobilized cytochrome c oxidase exhibits biphasic phenomena between the concentration of the electrolyte and the normal potentials; meanwhile its electrochemical behavior is also influenced by the buffer components. The quasi-reversible electron transfer process of cytochrome c oxidase with formal potential 385 mV vs. SHE in 5mM phosphate buffer solution (pH 6.4) corresponds to the redox reaction of cyt a(3) in cytochrome c oxidase, and the heterogeneous electron transfer rate constant obtained is 1.56 s(-1). By cyclic voltammetry measurements, it was observed that oxidation and reduction of cytochrome c in solution were catalyzed by the immobilized cytochrome c oxidase. This cytochrome c oxidase/MPA/Au system provides a good mimetic model to study the physiological functions of membrane-associated enzymes and hopefully to build a third-generation biosensor without using a mediator.