398 resultados para Self-assembled films
Resumo:
The redox-induced conformational equilibrium of cytochrome c (cyt c) adsorbed on DNA-modified metal electrode and the interaction mechanism of DNA with cyt c have been studied by electrochemical, spectroscopic and spectroelectrochemical techniques. The results indicate that the external electric field induces potential-dependent coordination equilibrium of the adsorbed cyt c between its oxidized state (with native six-coordinate low-spin and non-native five-coordinate high-spin heme configuration) and its reduced state (with native six-coordinate low-spin heme configuration) on DNA-modified metal electrode. The strong interactions between DNA and cyt c induce the self-aggregation of cyt c adsorbed on DNA. The orientational distribution of cyt c adsorbed on DNA-modified metal electrode is potential-dependent, which results in the deviation from an ideal Nernstian behavior of the adsorbed cyt c at high electrode potentials. The electric-field-induced increase in the activation barrier of proton-transfer steps attributed to the rearrangement of the hydrogen bond network and the self-aggregation of cyt c upon adsorption on DNA-modified electrode strongly decrease the interfacial electron transfer rate.
Resumo:
A composite film composed of porous polyurethane (PU) and polystyrene (PS) microspheres with both superhydrophobicity and superoleophilicity has been prepared. In this film, the dual-scale structure enhances both the hydrophobicity and oleophilicity of the surface material. The composite film with such an 'intelligent' wettability property can be utilized to separate oil and water systems efficiently.
Resumo:
Scanned probe oxidation (SPO) nanolithography has been performed with an atomic force microscope (AFM) on an octadecyl-terminated silicon (111) surface to create protuberant oxide line patterns under ambient conditions in contact mode. The kinetic investigations of this SPO process indicate that the oxide line height increases linearly with applied voltage and decreases logarithmically with writing, speed. The oxide line width also tends to vary with the same law. The ambient humidity and the AFM tip state can remarkably influence this process, too. As compared with traditional octadecylsilated SiO2/Si substrate, such a substrate can guarantee the SPO with an obviously lowered voltage and a greatly increased writing speed. This study demonstrates that such alkylated silicon is a promising silicon-based substrate material for SPO nanolithography.
Resumo:
Gold nanoparticles were used to enhance the immobilization amount and retain the immunoactivity of recombinant dust mite allergen Der f2 immobilized on a glassy carbon electrode (GCE). The interaction between allergen and antibody was studied by electrochemical impedance spectroscopy (EIS). Self-assembled Au colloid layer (Phi = 16 nm) deposited on (3-mercaptopropyl)trimethoxysilane (MPTS)-modified GCE offered a basis to control the immobilization of allergen Der f2. The impedance measurements were based on the charge transfer kinetics of the [Fe(CN)(6)](3-/4-) redox pair, compared with bare GCE, the immobilization of allergen Der f2 and the allergen-antibody interaction that occurred on the electrode surface altered the interfacial electron transfer resistance and thereby slowed down the charge transfer kinetics by reducing the active area of the electrode or by preventing the redox species in electrolyte solution from approaching the electrode. The interactions of allergen with various concentrations of monoclonal antibody were also monitored through the change of impedance response. The results showed that the electron transfer resistance increased with increasing concentrations of monoclonal antibody.
Resumo:
In this article, we firstly reported on the synthesis and characterization of ultratine CeF3 nanoparticles (NPs) modified by catanionic surfactant via a reverse micelles-based route. The catanionic surfactant PN was prepared by mixing the di(2-ethylhexyl) phosphoric acid (DEHPA) and primary amine (N1923) with 1:1 molar ratio. It exhibited a high surface activity and formed much small reverse micelles in comparison with its individual component (DEHPA or N1923). The PN reverse micelles were then used as templates to prepare ultrafine CeF3 NPs. The narrow distributed nanoparticles have an average diameter 1.8 nm. FTIR spectra indicated that there existed strong chemical interactions between nanoparticles and the adsorbed surfactants. The modification resulted in the FFIR peak position of P=O shifting to lower energy. Due to the effect of modification and small size, the CeF3 NPs showed a remarkable red shift of 54 mn in the fluorescence emission in comparison with that of bulk material and a red shift of 18 nm in contrast with that of the normal CeF3 NPs with an average diameter of 16 nm.
Resumo:
We have used Monte Carlo simulation to study the micellization of ABC 3-miktoarm star terpolymers in a selective solvent (good to A segment, bad to B and C segments). The simulation results reveal that the self-assembled morphology is determined by the block length, molecular architecture, terpolymer concentration and insolubility of insoluble block in the solvent. In dilute solution, symmetric terpolymers (N-B = N-C = 30) tend to aggregate into a novel wormlike pearl-necklace structure linked by an alternating arrangement of B and C spheres, whereas the asymmetric terpolymers (NB = 10, NC = 50) are likely to aggregate into spherical or cylindrical micelles (formed by C blocks) connected with some small B spheres, when the concentration of terpolymer is relatively low (chain number is 100). However, when the concentration of terpolymer is relatively high (chain number is 250), the symmetric terpolymers tend to aggregate into a netlike structure linked by an alternation of B and C spheres, whereas the asymmetric terpolymers are likely to aggregate into wormlike micelles (formed by C blocks) connected with some of small spheres (formed by B blocks). Moreover, when the insolubility of insoluble block in the solvent is weak, the insoluble blocks aggregate into some incompact micelles.
Resumo:
A novel self-assembled layer consisting of water tetramers and nitrate anions has been observed in the [Co(1,10-phenanthroline)(2)(NO3)]center dot(NO)(3)center dot 4H(2)O complex. X-ray crystallography and FT-IR spectroscopy indicate that although the water tetramers exist in an energetically less stable uudd configuration, the anionic host environments may play an important role in the formation and stabilization of the water clusters.
Resumo:
Surface replacement reaction of thiol-derivatized, single-stranded oligonucleotide (HS-ssDNA) by mercaptohexanol (MCH) is investigated in order to reduce surface density of the HS-ssDNA adsorbed to Au(111) surface. Cyclic voltammograms (CVs) and scanning tunneling microscopy (STM) are employed to assess the composition and state of these mixed monolayers. It is found that each CV of mixed self-assembled monolayers (SAMs) only shows a single reductive desorption peak, which suggests that the resulted, mixed SAMs do not form discernable phase-separated domains. The peak potential gradually shifts to negative direction and the peak area increases step by step over the whole replacement process. By analyzing these peak areas, it is concluded that two MCH molecules will replace one HS-ssDNA molecule and relative coverage can also be estimated as a function of exposing time. The possible mechanism of the replacement reaction is also proposed. The DNA surface density exponentially reduces with the exposing time increasing, in other words, the replacement reaction is very fast in the first several hours and then gradually slows down. Moreover, the morphological change in the process is also followed by STM.
Resumo:
Monolayer protected gold nanoparticles (MPCs) are the focus of recent research for their stability and are deemed as the building blocks of bottom-up strategies. In this Letter, 3-mercapto-1,2-propanediol monolayer protected gold nanoparticles (MPD-MPCs) were synthesized and characterized by transmission electron microscopy, UV/Vis spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The value of quantized double-layer capacitance (1.13 aF) of MPD-MPCs in aqueous media was obtained by differential pulse voltammograms.
Resumo:
3-Mercaptopropionic add monolayer protected gold nanoclusters (MPA-MPCs) were synthesized and characterized by transmission electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The exact value of quantized double-layer capacitance of MPCS in aqueous media was obtained by differential pulse voltammograms.
Resumo:
In this article, we employed triphenylmethanethiol (TPMT) as a novel rigid agent for capping gold nanoparticles and the TPMT monolayer-protected gold nanoparticles were characterized by various analytical techniques. High-resolution transmission electron microscopy showed a narrow dispersed gold core with an average core diameter of ca. 3.6 nm. The UV/vis spectrum revealed the surface plasmon absorbance at 528 nm. The p-pi conjugated structure of the TPMT ligand was confirmed by nuclear magnetic resonance. Differential scanning calorimetry and Fourier transform infrared spectroscopy revealed the rigid nature of the TPMT chains.
Resumo:
Numerous reports have focused on ferrocene-terminated electroactive self-assembled monolayers (SAMs) on a flat An surface but only a few on ferrocene SAMs on An colloid. In this paper, we employ 4-ferrocene thiophenol as a novel capping agent to produce electroactive gold nanoparticles in consideration of the peculiar pi-conjugated structure. Transmission electron microscopy shows the narrow-dispersed gold core with an average core diameter of ca. 2.5 nm. UV/vis spectra examine the pi-conjugated structure of 4-ferrocene thiophenol and surface plasmon absorbance of the indicated gold nanoparticles. X-ray photoelectron spectroscopy reveals electronic properties of the An core and thiol ligands. Electrochemical measurement shows that the oxidation peak current is proportional to the scan rate, indicating the electrode process is controlled by adsorbed layer reaction. The formal potential of the Fc-MPCs is compared with that of free ferrocene in MeCN solution and the Fc-SAMs. The shifts are attributed to the phenyl moiety in the 4-ferrocene thiophenol and dielectric constant of the solvation environment.
Resumo:
We construct a hybrid bilayer membrane (HBM) on a new substrate-carbon electrode. It is an extension of HBM based on other substrates. Primary alkylamine was chemically modified onto the surface of a carbon electrode by electrochemical scans; thus, a monolayer was formed on the electrode. Because the alkane chains section is toward the outside, a hydrophobic surface was constructed. Then a lipid monolayer was spread on the hydrophobic surface of the carbon electrode. The formed HBM was characterized by electrochemical and ATR-FT-IR methods. From ATR-FT-IR results, the lipid order parameter (S) of 0.73 was obtained. This kind of hybrid membrane has the advantages of a lipid/alkanethiol HBM. A potential application of this HBM as a biosensor (detecting K+) was given.
Resumo:
Thiol-terminated oligonucleotide was immobilized to gold surface by self-assembly method. A novel amplification strategy was introduced for improving the sensitivity of DNA. hybridization using biotin labeled protein-streptavidin network complex. This complex can be formed in a cross-linking network of molecules so that the amplification of the response signal will be realized due to the big molecular size of the complex. It could be proved from the impedance technique that this amplification strategy caused dramatic improvement of the detection sensitivity. These results give significant advances in the generality and sensitivity as it is applied to biosensing.
Resumo:
A stable electroactive thin film of cobalt hexacyanoferrate (CoHCF) was electrochemically deposited on the surface of a glassy carbon (GC) electrode with a new and simple method. The cyclic voltammograms of the CoHCF Film modified GC (CoHCF/GC) electrode prepared by this method exhibit two pairs of well-defined redox peaks, at scan rates up to 200 mV s(-1). The advantage of this method is that it is easy to manipulate and to control the surface coverage of CoHCF on the electrode surface. The modified electrode shows good electrocatalytic activity towards the electrochemical reaction of dopamine (DA) in a 0.1 mol dm (3) KNO3 + phosphate buffer solution (pH 7.0). The rate constant of the electrocatalytic oxidation of DA at the CoHCF/GC electrode is determined by employing rotating disk electrode measurements.