454 resultados para STRIPPING VOLTAMMETRY
Resumo:
Prussian blue has been formed by cyclic voltammetry onto the basal pyrolytic graphite surface to prepare a chemically modified electrode which provides excellent electrocatalysis for both oxidation and reduction of hydrogen peroxide. It is found for the first time that glucose oxidase or D-amino oxidase can be incorporated into a Prussian blue film during its electrochemical growth process. Two amperometric biosensors were fabricated by electrochemical codeposition, and the resulting sensors were protected by coverage with a thin film of Nafion. The influence of various experimental conditions was examined for optimum analytical performance. The glucose sensor responds rapidly to substrates with a detection limit of 2 x 10(-6) M and a linear concentration range of 0.01-3 mM. There was no interference from 2 mM ascorbic acid or uric acid. Another (D-amino acid) sensor gave a detection limit of 3 x 10(-5) M D-alanine, injected with a linear concentration range of 7.0 x 10(-5)-1.4 x 10(-2) M. Glucose and D-amino acid sensors remain relatively stable for 20 and 15 days, respectively. There is no obvious interference from anion electroactive species due to a low operating potential and excellent permselectivity of Nafion.
Resumo:
Reduction of hydrogen peroxide at a glassy carbon (GC) electrode modified with sigma-bonded pyrrole iron(III) octaethylporphyrin complex, (OEP)Fe(Pyr), was studied by cyclic voltammetry and a rotating disk electrode. In 0.1N NaOH solution, it is shown that such an (OEP)Fe(Pyr)/GC electrode has a significant catalytic activity towards hydrogen peroxide reduction (E(D) = -0.80 V, k = 0.066 cm s(-1)); however, the electrode stability is low. The deactivation is observed when the reaction charge (Q) is passing through the (OEP)Fe(Pyr)/GC disk electrode. A linear rotation scan method is applied to study the kinetic process by determining the disk electrochemical response (i(D)) to rotation rate (omega) at a definite disk potential (E(D)). Considering that the number of adsorbed electroreduced catalyst molecules (Red) varies according to the disk potential, a factor theta(= Gamma(Red)/(Gamma(Red) + Gamma(Ox))) is introduced to describe the electrode surface area fraction for electroreduced species. The obtained Koutecky-Levich equation is applicable whatever the potential is.
Resumo:
The variation in molecule adsorption mode on pretreated highly oriented pyrolytic graphite electrodes, modified with the title complex K10H3[Dy(SiMo11O39)(2)] by cyclic voltammetry in the title complex solution, was observed in situ by electrochemical scanning tunnelling microscopy (ECSTM) with molecular resolution in sodium sulphate solution. According to the ECSTM images and the known molecular structure we conclude that the adsorption mode of the title complex modified electrode changed during potential cycling from ''vertical'' to ''inclined'' and then ''horizontal'' or ''flat'' mode, i.e. the title complex adsorbed on the surface of electrode by one ligand of the complex at first, then began to incline and was finally adsorbed by two ligands of the complex. This result indicates that the adsorption mode on the modified electrode surface changed during potential cycling in the sulphate solution and a much more stable molecular layer was formed. The change in adlattice of adsorbates on the modified electrode surface from hexagonal to rectangular was also observed by ECSTM. A plausible model was given to explain this process.
Resumo:
The potential step and cyclic voltammetric experiments in the thin layer cell were studied by the digital simulation method in this work. A relationship between the time needed for exhaustive electrolysis of the electroactive species and the thickness of the thin layer cell was obtained. On the basis of this formula, the lower time limit for a kinetic plot of the following chemical reaction can be estimated. For the cyclic voltammetry, a semiempirical formula was derived for the peak-peak potential difference (Delta Ep) in terms of the sweep rate (v), thickness of the cell (d), diffusion coefficient (D) and electron transfer number (n) 59 - n Delta Ep/n Delta Ep = 0.328(RT D/nF vd(2))(1.20).
Resumo:
An integrated CaF2 crystal optically transparent infrared (ir) thin-layer cell was designed and constructed without using any soluble adhesive materials. It is suitable for both aqueous and nonaqueous systems, and can be used not only in ir but also in uv-vis studies. Excellent electrochemical and spectroelectrochemical responses were obtained in evaluating this cell by cyclic voltammetry and steady-state potential step measurements for both ir and uv-vis spectrolectrochemistry with ferri/ferrocyanide in aqueous solution, and with ferrocene/ferrocenium in organic solvent as the testing species, respectively. The newly designed ir cell was applied to investigate the electrochemical reduction process of bilirubin in situ, which provided direct information for identifying the structure of the reduction product and proposing the reaction mechanism.
Resumo:
Chemically modified electrodes (CMEs) were prepared by adsorbing different dyes, including methylene blue (MB), toluidine blue (TB) and brilliant cresyl blue (BCB), onto glassy carbon electrodes (GCE) with anodic pretreatment. The electrochemical reactions of adsorbed dyes are fairly reversible at low coverages. The CMEs are more stable in acid solutions than in alkaline ones, which is mainly due to decomposition of the dyes in the latter media. They exhibit an excellent catalytic ability for the oxidation of nicotinamide coenzymes (NADH and NADPH). The formation of a charge transfer complex between the coenzyme and the adsorbed mediator has been demonstrated using a rotating disk electrode. The charge transfer complex decomposition is a slow step in the overall electrode reaction process. Some kinetic parameters are estimated. Dependence of the electrocatalytic activity of the CMEs on the solution pH is discussed.
Resumo:
The solvent extraction of Sc(III), Zr(IV), Th(IV), Fe(III) and Lu(III) with Cyanex 302 (bis(2,4,4-trimethylpentyl)monothiophosphinic acid) and Cyanex 301 ( bis(2,4,4-trimethylpentyl) dithiophosphinic acid) in n-hexane from acidic aqueous solutions has been investigated systematically. The effect of equilibrium aqueous acidity on the extraction with these reagents was studied. The separation of Th(IV), Fe(III) and Lu(III) from Sc(III), or the separation of other metals from Lu(III) with Cyanex 302, can be achieved by controlling the aqueous acidity. However, Cyanex 301 exhibited a poor selectivity for the above metals, except for Lu(III). The extraction of these metals with Cyanex 272, Cyanex 302 and Cyanex 301 has been compared. The stripping percentages of Sc(III) for Cyanex 302 and Cyanex 301 in a single stage are near 78% and 75% with 3.5 mol/L and 5.8 mol/L sulphuric acid solutions, respectively. The effects of extractant concentration and temperature on the extraction of Sc(III) were investigated. The stoichiometry of the extraction of Sc(III) with Cyanex 302 was determined. The role of different components of Cyanex 302 in the extraction of Sc(III) was discussed.
Resumo:
The electrochemical transfer behaviour of vanadium-containing heteropolytungstate anions [PW12-xVxO40]((3+r)-) (x = 1-4) across the water \nitrobenzene interface has been investigated by cyclic voltammetry and chronopotentiometry with cyclic linear current scanning. The transfer of PW11V1O404-, HPW10V2O404-, H2PW10V2O403-, H3PW9V3O403- and H4PW8V4O(40)(3-) across the water \nitrobenzene interface can be observed within the potential window. The effects were observed of pH in the water phase on the transfer behaviour and the formation of vanadium-containing heteropolytungstate anions in solution. Heteropolytungstate anions become more stable due to their involving the vanadium atom. The degree of protonation and the dissociation constant of the trivalent vanadium-containing heteropolytungstate anion of protonation increase with increasing vanadium content. The transfer processes are diffusion-controlled The standard transfer potential, the standard Gibbs energy and the dissociation constant for vanadium-containing heteropolytungstate anions have been obtained and the transfer mechanisms are discussed.
Resumo:
A novel in-situ spectroelectrochemical technique, the combination of probe beam deflection (PBD) with cyclic voltammetry (CV), was used to study the ion exchange process of prussian blue(PB) modified film electrode in contact with various electrolyte solutions. The ion exchange mechanism was verified as following: (K2Fe2+FeII)(CN)(6) -e(-)-k(+)reversible arrow +e(-)+k(+) (KFe3+FeII)(CN)(6) -ke(-)-xk(+)reversible arrow +xe(-)+kk(+) [(Fe3+FeIII)(CN)(6)](x)[(KFe3+FeII)(CN)(6)](1-x) where on reduction PB film in contact with an acidic KCl electrolyte, it was confirmed that protons enter into the PB film before K+ cations.
Resumo:
The transfer of bis-1:11 molybdosilicate heteropolyanion with dysprosium across the water/nitrobenzene interface has been investigated by chronopotentiometry with linear current scanning and cyclic voltammetry. The strandard transfer potential and Gibbs energy estimated from cyclic voltammetry were 0.102V and -39.5kJ.mol(-1), respectively. The kinetic parameters of the transfer were determinated by chronopotentiometry with the linear current scanning.
Resumo:
The conducting platinum cluster compound K1.64Pt(C2O4)2 was electrochemically synthesized on a glassy carbon electrode through electrooxidation of K2Pt(C2O4)2 in an aqueous medium using a single potential step and cyclic voltammetry methods. Two kinds of
Resumo:
The complex behavior of bilirubin (BR) with beta-CD (cyclodextrin) and gamma-CD in aqueous and dimethylformamide (DMF) solution was investigated by absorption spectroscopy and cyclic voltammetry, respectively. The data shows that the complexation mechanis
Resumo:
The strong chelating ability of mercaptoacetic acid for certain metal ions is exploited for a new; kind of voltammetric sensor. Specifically, a glassy carbon electrode (GCE) surface was covalently covered br; mercaptoacetic acid. The preparation of mercap
Resumo:
A novel wall-jet cell with parallel dual cylinder (PDC) microelectrodes was constructed and used for flow injection analysis (FLA). The detector takes the advantages of ''redox recycling'' between bipotentiostated microcylinder electrodes (- 0.4 V/SCE an
ELECTROCHEMICAL STUDY OF ISOPOLYMOLYBDATE(VI) ANION TRANSFER ACROSS THE WATER/NITROBENZENE INTERFACE
Resumo:
Isopolymolybdate (VI) anion transfer across the water/nitrobenzene (w/n) interface was studied by cyclic voltammetry. The effect of pH and responsed kinetics of isopolymolybdate anion's formation in the water phase on the transfer behavior have been studi