436 resultados para Procion Red HE-3B
Resumo:
Three new polybrominated 1H-indoles, compounds 1-3, and three new aristolane sesquiterpenes, compounds 4-6, were isolated from the marine red alga Laurencia similis, together with seven known natural products. Their structures were elucidated on the basis of detailed spectroscopic and mass-spectrometric analyses, as well as by comparison with literature data.
Resumo:
Two new and one known squalenoid-derived triterpenoids. namely, laurenmariannol (1) and (21 alpha)-21-hydroxythyrsiferol (2). and the known thyrsiferol (3) were isolated and identified from the marine red alga Laurencia mariannensis, which was collected off the coast of Hainan and Weizhou Islands of China. The structures of these compounds were established by means of spectroscopic analyses, as well as by comparison with literature data. Compounds I and 2 displayed significant cytotoxic activity against P-388 tumor cells with IC50 values of 0.6 and 6.6 mu g/ml, respectively.
Resumo:
Two new brominated diterpenes, namely, laurendecumtriol (1) and 11-O-deacetylpinnaterpene C (2), one new polybromoindole, 2,3,4,6-tetrabromo-1-methyl-1H-indole (7), and six known natural products were isolated and identified from the marine red alga Laurencia decumbens. Their structures were elucidated on the basis of detailed spectroscopic and mass-spectrometric analysis as well as by comparison with literature data. Based on 2D-NMR experiments, the previously reported NMR data for pinnaterpene C (3) were reassigned.
Resumo:
Helium, rieon and argon isotope compositions of fluid inclusions have been measured in hydrothermal sulfide samples from the TAG hydrothermal field at the Mid-Atlantic Ridge. Fluid-inclusion He-3/He-4 ratios are 2.2-13.3 times the air value (Ra), and with a mean of 7.2 Ra. Comparison with the local vent fluids (He-3/He-4=7.5-8.2 Ra) and mid-ocean ridge basalt values (He-3/He-4=6-11 Ra) shows that the variation range of He-3/He-4 ratios from sulfide-hosted fluid inclusions is significantly large. Values for Ne-20/Ne-22 are from 10.2 to 11.4, which are significantly higher than the atmospheric ratio (9.8). And fluid-inclusion Ar-40/Ar-36 ratios range from 287 to 359, which are close to the atmospheric values (295.5). These results indicate that the noble gases of fluid inclusions in hydrothermal sulfides are a mixture of mantle- and seawater-derived noble gases; the partial mantle-derived components of trapped hydrothermal fluids may be from the lower mantle; the helium of fluid inclusions is mainly from upper mantle; and the Ne and Ar components are mainly from seawater.
Resumo:
The noble gas nuclide abundances and isotopic ratios of the upmost layer of Fe-Mn crusts from the western and central Pacific Ocean have been determined. The results indicate that the He and Ar nuclide abundances and isotopic ratios can be classified into two types: low He-3/He-4 type and high He-3/He-4 type. The low He-3/He-4 type is characterized by high He-4 abundances of 191x10(-9) cm(3.)STP(.)g(-1) on average, with variable He-4, Ne-20 and Ar-40 abundances in the range (42.8-421)x10(-9) cm(3.)STP(.)g(-1), (5.40-141)x10(-9)cm(3.)STP(.)g(-1), and (773-10976)x10(-9) cm(3.)STP(.)g(-1), respectively. The high He-3/He-4 samples are characterized by low He-4 abundances of 11.7x10(-9) cm(3.)STP(.)g(-1) on average, with He-4, Ne-20 and Ar-40 abundances in the range of (7.57-17.4)x10(-9) cm(3.)STP(.)g(-1), (110.4-25.5)x10(-9) cm(3.)STP(.)g(-1) and (5354-9050)x10(-9) cm(3.)STP(.)g(-1), respectively. The low He-3/He-4 samples have He-3/He-4 ratios (with RIRA ratios of 2.04-2.92) which are lower than those of MORB (R/R-A=8 +/- 1) and Ar-40/Ar-36 ratios (447-543) which are higher than those of air (295.5). The high He-3/He-4 samples have He-3/He-4 ratios (with R/R-A ratios of 10.4-12.0) slightly higher than those of MORB (R/R-A=8 +/- 1) and Ar-40/Ar-36 ratios (293-299) very similar to those of air (295.5). The Ne isotopic ratios (Ne-20/Ne-22 and Ne-21/Ne-22 ratios of 10.3-10.9 and 0.02774-0.03039, respectively) and the Ar-38/Ar-36 ratios (0.1886-0.1963) have narrow ranges which are very similar to those of air (the Ne-20/Ne-22, Ne-21/Ne-22, Ar-38/Ar-36 ratios of 9.80, 0.029 and 0.187, respectively), and cannot be differentiated into different groups. The noble gas nuclide abundances and isotopic ratios, together with their regional variability, suggest that the noble gases in the Fe-Mn crusts originate primarily from the lower mantle. The low He-3/He-4 type and high He-3/He-4 type samples have noble gas characteristics similar to those of HIMU (High U/Pb Mantle)- and EM (Enriched Mantle)-type mantle material, respectively. The low He-3/He-4 type samples with HIMU-type noble gas isotopic ratios occur in the Magellan Seamounts, Marcus-Wake Seamounts, Marshall Island Chain and the Mid-Pacific Seamounts whereas the high He-3/He-4 type samples with EM-type noble gas isotopic ratios occur in the Line Island Chain. This difference in noble gas characteristics of these crust types implies that the Magellan Seamounts, Marcus-Wake Seamounts, Marshall Island Chain, and the Mid-Pacific Seamounts originated from HIMU-type lower mantle material whereas the Line Island Chain originated from EM-type lower mantle material. This finding is consistent with variations in the Pb-isotope and trace element signatures in the seamount lavas. Differences in the mantle surce may therefore be responsible for variations in the noble gas abundances and isotopic ratios in the Fe-Mn crusts. Mantle degassing appears to be the principal factor controlling noble gas isotopic abundances in Fe-Mn crusts. Decay of radioactive isotopes has a negligible influence on the nuclide abundances and isotopic ratios of noble gases in these crusts on the timescale of their formation.
Resumo:
Fluorescence excitation-emission spectroscopy (EEMS) was employed to analyze the 3-dimensional fluorescence of dissolved organic matter in the East China Sea after diatom red tide dispersion. The relationships between fluorescence peak intensity, and salinity and chlorophyll-a were discussed. The centers of protein-like fluorescence peaks dispersed at Ex(max)/Em(max) = 270-280/290-315 nm (Peak B), 220-230/290-305 nm (Peak D), 230-240/335-350 nm(Peak S)and 280/320 nm(Peak T). Two humic-like peaks appeared at 255-270/435-480 nm (Peak A) and 330-350/420-480 nm(Peak C). High tyrosine-like intensity was observed in diatom red tide dispersion area, and tryptophan-like fluorescence was also found which was lower. High FIB/FIS showed that diatom red tide produced much tyrosine-like matter during dispersion. Peaks S, A and C had positive correlation with one another, and their distributions were similar, which decreased with distance increasing away from the shore. Good negative correlations between peaks S, A and C and salinity suggested that Jiangsu-Zhejiang coastal water was the same source of then-L Correlations between fluorescence peak intensity and chlorophyll-a were not remarkable enough to clear the relationship between fluorescence and living algal matter. It was supposed that the living algal matter contributed little to the fluorescence intensity of algal dispersion seawater.
Resumo:
The relationship between Alexandrium tamarense (Lebour) Balech, one of red-tide alga, and two strains of marine bacteria, Bacillius megaterium(S-7) and B. halmapulus(S-10) isolated from Xiamen Western Sea, was investigated by evaluating the growth state of A. tamarense and the variation of P-glucosidase activity in co-culture system. The results showed the growth and multiplication of the alga were related with the concentration, genus speciality of the bacteria, and growth stage of the alga itself. The growth of A. tamarense was obviously inhibited by S7 and S, at high concentration. Either inhibition or promotion contributed much more clearly in earlier than in later stage of the growth of the alga. Furthermore, there was a roughly similar variation trend of the activity of extra-cellular enzyme, beta-glucosidase, in the water of the separately co-cultured bacteria S-7 and S-10 with the alga. The beta-glucosidase activity (beta-GlcA) rapidly increased during the later algal growth accompanying the increase of the lysis of the alga cells. The obvious inhibition of A. tamarense by marine bacteria at high concentration and evident increase of beta-GlcA in co-colture system would help us in better understanding the relationship between red-tide alga and bacteria, and also enlightened us the possible use of bacteria in the bio-control of red-tide.
Resumo:
The effect of S-10, a strain of marine bacteria isolated from sediment in the Western Xiamen Sea, on the growth and paralytic shellfish poison (PSP) production in the alga Alexandrium tamarense (A. tamarense) was studied under controlled experimental conditions. The results of these experiments have shown that the growth of A. tamarense is obviously inhibited by S-10 at high concentrations, however no evident effect on its growth was observed at low concentrations. Its PSP production was also inhibited by S 10 at different concentrations, especially at low concentrations. The toxicity of this strain of A. tamarense is about (0.9512.14) x 10(-6) MU/cell, a peak toxicity value of 12.14 x 10(-6) MU/cell appeared on the 14th day, after which levels decreased gradually. The alga grew well in conditions of pH 6-8 and salinities of 20-34 parts per thousand. The toxicity of the alga varied markedly at different pH and salinity levels. Toxicity decreased as pH increased, while it increased with salinity and reached a peak value at a salinity of 30 parts per thousand, after which it declined gradually. S-10 at a concentration of 1.02 x 10(9) cells/ml inhibited growth and the PSP production of A. tamarense at different pH and salinity levels. S-10 had the strongest inhibitory function on the growth of A. tamarense under conditions of pH 7 and a salinity of 34 parts per thousand. The best inhibitory effect on PSP production by A. tamarense was at pH 7, this inhibitory effect on PSP production did not relate to salinity. Interactions between marine bacteria and A. tamarense were also investigated using the flow cytometer technique (FCM) as well as direct microscope counting. S-10 was identitied as being a member of the genus Bacillus, the difference in 16S rDNA between S-10 and Bacillus halmapalus was only 2%. The mechanism involved in the inhibition of growth and PSP production of A. tamarense by this strain of marine bacteria, and the prospect of using it and other marine bacteria in the biocontrol of red-tides was discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Surface modification of montmorillonite by means of Mg2+ insertion reaction has been studied and a positively charged montmorillonite has been prepared. The effects of preparation temperature and Mg2+ concentration on the positive charge property of the clay and on the clay coagulating Heterosigma akashiwo have been studied. The results showed that the modified clay enhanced the coagulation and the used amount decreased to 1/5-1/10 of the original. The removal rates of Heterosigma akashiwo were correlated positively with positive charge on the clay in accordance with theoretical model.
Resumo:
Red tides (high biomass phytoplankton blooms) have frequently occurred in Hong Kong waters, but most red tides occurred in waters which are not very eutrophic. For example, Port Shelter, a semi-enclosed bay in the northeast of Hong Kong, is one of hot spots for red tides. Concentrations of ambient inorganic nutrients (e.g. N, P), are not high enough to form the high biomass of chlorophyll a (chl a) in a red tide when chl a is converted to its particulate organic nutrient (N) (which should equal the inorganic nutrient, N). When a red tide of the dinoflagellate Scrippsiella trochoidea occurred in the bay, we found that the red tide patch along the shore had a high cell density of 15,000 cells ml(-1), and high chl a (56 mu g l(-1)), and pH reached 8.6 at the surface (8.2 at the bottom), indicating active photosynthesis in situ. Ambient inorganic nutrients (NO3, PO4, SiO4, and NH4) were all low in the waters and deep waters surrounding the red tide patch, suggesting that the nutrients were not high enough to support the high chl a >50 mu g l(-1) in the red tide. Nutrient addition experiments showed that the addition of all of the inorganic nutrients to a non-red-tide water sample containing low concentrations of Scrippsiella trochoidea did not produce cell density of Scrippsiella trochoidea as high as in the red tide patch, suggesting that nutrients were not an initializing factor for this red tide. During the incubation of the red tide water sample without any nutrient addition, the phytoplankton biomass decreased gradually over 9 days. However, with a N addition, the phytoplankton biomass increased steadily until day 7, which suggested that nitrogen addition was able to sustain the high biomass of the red tide for a week with and without nutrients. In contrast, the red tide in the bay disappeared on the sampling day when the wind direction changed. These results indicated that initiation, maintenance and disappearance of the dinoflagellate Scrippsiella trochoidea red tide in the bay were not directly driven by changes in nutrients. Therefore, how nutrients are linked to the formation of red tides in coastal waters need to be further examined, particularly in relation to dissolved organic nutrients. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Six new bromophenols, 3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)pyrocatechol (1), 2,2',3-tribromo-3',4,4',5-tetrahydroxy-6'-hydroxymethyldiphenylmethane (2), 2,2',3-tribromo-3',4,4',5-tetrahydroxy-6'-ethyloxymethyldiphenylmethane (3),(+/-)-2-methyl-3-(2,3-dibromo-4,5-dihydroxyphenyl)propylaldehyde (4), (+/-)-2-methyl-3-(2,3-dibromo-4,5-dihydroxyphenyl)propylaldehyde dimethyl acetal (5), and 3-bromo-4,5-dihydroxybenzoic acid methyl ester (6), together with eight known bromophenols, 3-bromo-4,5-dihydroxybenzaldehyde (7), 2,3-dibromo-4,5-dihydroxybenzyl alcohol (lanosol, 8), 2,3-dibromo-4,5-dihydroxybenzyl methyl ether (9), 2,3-dibromo-4,5-dihydroxybenzyl ethyl ether (10), 2,3-dibromo-4,5-dihydroxybenzylaldehyde (11), bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (12), 3-bromo-4-(2,3-dibromo-4,5-dihydroxybenzyl)-5-methoxymethylpyrocatechol (13), and 2,2',3,3'-tetrabromo-4,4',5,5'-tetrahydroxydiphenyl methane (14), were isolated from the red alga Rhodomela confervoides. Their structures were elucidated by chemical and spectroscopic methods including IR, HRFABMS, and 1D and 2D NMR techniques.
Resumo:
Eight new bromophenol derivatives, 2,3-dibromo-4,5-dihydroxybenzyl methyl sulfoxide (1), 4-(2,3-dibromo-4,5-dihydroxyphenyl)-3-butene-2-one (2), 2-(3-bromo-5-hydroxy-4-methoxyphenyl)-3-(2,3-dibromo-4,5-dihydroxyphenyl)propionic acid (3), 2-(3-bromo-5-hydroxy-4-methoxyphenyl)-3-(2,3-dibromo-4,5-dihydroxyphenyl)propionic acid methyl ester (4), 2-phenyl-3-(2,3-dibromo-4,5-dihydroxyphenyl)propionic acid (5), 4'-methoxy-2",3',3"-tribromo-4",5',5"-trihydroxydiphenylacetic acid (6), and 3-bromo-5-hydroxy-4-methoxyphenylacetic acid (7) and its methyl ester (8), together with a known bromophenol, 3-bromo-5-hydroxy4-methoxybenzoic acid (9), were isolated from the red alga Rhodomela confervoides. Their structures were elucidated by spectroscopic methods including IR, EIMS, FABMS, ESIMS, HRFABMS, HRESIMS, 1D and 2D NMR, and single-crystal X-ray structure analysis. Compounds 1-4, 8, and 9 were found inactive against several human cancer cell lines and microorganisms.
Resumo:
Together with five known sesquiterpenes, EtOH extraction of Laurencia saitoi yielded four new compounds, including three sesquiterpenes and one norsesquiterpene derivative. Their structures and relative configurations were elucidated by spectroscopic methods, including 1D- and 2D-NMR (H-1,H-1-COSY, HMQC, HMBC, and NOESY), as well as low- and high-resolution mass-spectrometric analyses.
Resumo:
Two new bromoindole alkaloids have been isolated from the ethanolic extract of the red alga Laurencia similis. On the basis of chemical and spectroscopic methods (including 1D and 2D NMR technique), their structures have been elucidated as 2,2',5,5',6,6'-sixibromo-3, 3'-bi-1H-indole and 3, 5-dibromo-1-methylindole, respectively. (C) 2008 Xiao Bin Zhu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.