384 resultados para Methanol


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soil organic partition coefficient (K-oc) is one of the most important parameters to depict the transfer and fate of a chemical in the soil-water system. Predicting K-oc by using a chromatographic technique has been developing into a convenient and low-cost method. In this paper, a soil leaching column chromatograpy (SLCC) method employing the soil column packed with reference soil GSE 17201 (obtained from Bayer Landwirtschaftszentrum, Monheim, Germany) and methanol-water eluents was developed to predict the K-oc of hydrophobic organic chemicals (HOCs), over a log K-oc range of 4.8 orders of magnitude, from their capacity factors. The capacity factor with water as an eluent (k(w)') could be obtained by linearly extrapolating capacity factors in methanol-water eluents (k') with various volume fractions of methanol (phi). The important effects of solute activity coefficients in water on k(w)' and K-oc were illustrated. Hence, the correlation between log K-oc and log k(w)' (and log k') exists in the soil. The correlation coefficient (r) of the log K-oc vs. log k(w)' correlation for 58 apolar and polar compounds could reach 0.987, while the correlation coefficients of the log K-oc-log k' correlations were no less than 0.968, with phi ranging from 0 to 0.50. The smaller the phi, the higher the r. Therefore, it is recommended that the eluent of smaller phi, such as water, be used for accurately estimating K-oc. Correspondingly, the r value of the log K-oc-log k(w)' correlation on a reversed-phase Hypersil ODS (Thermo Hypersil, Kleinostheim, Germany) column was less than 0.940 for the same solutes. The SLCC method could provide a more reliable route to predict K-oc indirectly from a correlation with k(w)' than the reversed-phase liquid chromatographic (RPLC) one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel cell vehicles (FCVs) offer the potential of ultra-low emissions combined with high efficiency. Proton exchange membrane (PEM) fuel cells being developed for vehicles require hydrogen as a fuel. Due to the various pathways of hydrogen generation, both onboard and off-board, the question about which fuel option is the most competitive for fuel cell vehicles is of great current interest. In this paper, a life-cycle assessment (LCA) model was made to conduct a comprehensive study of the energy, environmental, and economic (3E) impacts of FCVs from well to wheel (WTW). In view of the special energy structure of China and the timeframe, 10 vehicle/fuel systems are chosen as the study projects. The results show that methanol is the most suitable fuel to serve as the ideal hydrogen source for fuel cell vehicles in the timeframe and geographic regions of this study. On the other hand, gasoline and pure hydrogen can also play a role in short-term and regional applications, especially for local demonstrations of FCV fleets. (c) 2004 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quantitative structure-retention relationship is one of the most actively studied topics in the field of chromatography. In this paper, retention parameters of components were used to discriminate the xanthones in a methanol extract of Swertia franchetiana. The extract was analysed by HPLC under two different multistage linear gradient conditions and the retention parameters calculated from these retention data. It was found that the retention parameters of xanthones are in a specific region in the plot of log k(w) vs. S and the xanthones in the extract could be distinguished from other components by this feature. Furthermore, xanthone aglycones and xanthone glucosides could also be discriminated by retention parameters. Copyright (C) 2005 John Wiley Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 muL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized. (C) 2004 American Society for Mass Spectrometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Performance of comprehensive two-dimensional liquid chromatography system is greatly improved than we reported previously by using a silica monolithic column as for the second dimensional separation. Due to the increase of the elution speed on the second dimensional monolithic column, the first dimensional column efficiency and analysis rate can be greatly improved as comparing with conventionally second dimensional column. The developed system was applied to analysis of methanol extraction of two umbelliferae herbs Ligusticum chuanxiong Hort. and Angelica sinensis (Oliv.) Diels by using CN column as for the first dimensional separation and a silica monolithic ODS column for the second dimensional separation, and the obtained three-dimensional chromatograms were treated by normalization of peak heights with the value of the highest peak or setting a certain value using a software written in-house. It was observed that much more peaks for low-abundant components in TCM extract can clearly be detected here than we reported before, due to the large difference for the amount of components in TCMs' extract. With the above improvements in separation performance and data treatment, totally about 120 components in methanol extraction of Rhizoma chuanxiong and 100 in A. sinensis were separated with UV detection within 130 min. This result meant that both the number of peaks detected increase twice but the analysis time decease twice if comparing with the previously reported result. (c) 2005 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major components of the plant curcuma longa are the curcuminoids that include curcumin, demethoxycurcumin and bisdemethoxycurcumin. It has been reported the curcuminoids have some important activities. A new CZE method with diode array detection has been developed for the separation and determination of the curcumin, demethoxycurcumin and bisdemethoxycurcumin. Three curcuminoids could be readily separated within 7 min with a 15 mM sodium tetraborate buffer containing 10% methanol (v/v) at pH 10.8, 25 kV and 30 degrees C. The method has been validated and shows good performance with respect to selectivity, reproducibility, linearity, limits of detection and recovery. The proposed method was successfully applied to determine the curcuminoids in urine. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A coupled-column liquid chromatographic method for the direct analysis of 14 urinary nucleosides is described. Efficient on-line clean-up and concentration of 14 nucleosides from urine samples were obtained by using a boronic acid-substituted silica column (40 turn x 4.0 mm I.D.) as the first column (Col-1) and a Hypersil ODS2 column (250 mm x 4.6 mm I.D.) as the second column (Col-2). The mobile phases applied consisted of 0.25 mol/L ammonium acetate (pH 8.5) on Col-1, and of 25 mmol/L potassium dihydrogen phosphate (pH 4.5) on Col-2, respectively. Determination of urinary nucleosides was performed on Col-2 column by using a linear gradient elution comprising 25 mmol/L potassium dihydrogen phosphate (pH 4.5) and methanol-water (60:40, v/v) with UV detection at 260 nm. Urinary nucleosides analysis can be carried out by this procedure in 50 min requiring only pH adjustment and the protein precipitation by centrifugation of urine samples. Calibration plots of 14 standard nucleosides showed excellent linearity (r > 0.995) and the limits of detection were at micromolar levels. Both of intra- and inter-day precisions of the method were better than 6.6% for direct determination of 14 nucleosides. The validated method was applied to quantify 14 nucleosides in 20 normal urines to establish reference ranges. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present review, we summarize the recent progress in electrocatalysts for direct alcohol fuel cells, focussing on the research of electrocatalysts for both alcohol oxidation and oxygen reduction, which are crucial in the development of fuel cells. A modified EG (ethylene polyol) method to prepare well-dispersed nano-sized Pt-based electrocatalysts with high loadings is reported. By this method, a more active carbon supported PtRu catalyst for methanol oxidation reaction and a PtSn catalyst for ethanol oxidation reaction have been synthesized successfully. Furthermore, a methanol tolerant Pd-based catalyst for cathode oxygen reduction reaction has been developed. HRTEM and HR-EDS have been employed to characterize the microstructure and micro-components of the above electrocatalysts. Results show that the bimetallic electrocatalysts prepared by the modified EG method display uniform size and homogeneous components at nanometer scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, a method based on transmission-line mode for a porous electrode was used to measure the ionic resistance of the anode catalyst layer under in situ fuel cell operation condition. The influence of Nafion content and catalyst loading in the anode catalyst layer on the methanol electro-oxidation and direct methanol fuel cell (DMFC) performance based on unsupported Pt-Ru black was investigated by using the AC impedance method. The optimal Nafion content was found to be 15 wt% at 75 degrees C. The optimal Pt-Ru loading is related to the operating temperature, for example, about 2.0 mg/cm(2) for 75-90 degrees C, 3.0 mg/cm2 for 50 degrees C. Over these values, the cell performance decreased due to the increases in ohmic and mass transfer resistances. It was found that the peak power density obtained was 217 mW/cm(2) with optimal catalyst and Nafion loading at 75 degrees C using oxygen. (c) 2005 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.