404 resultados para Light Coagulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both absolute molecular weight and molecular sizes (radius of gyration and hydrodynamic radius) of a vinyl-type polynorbornene eluting from size-exclusion chromatography columns were determined by combined with a static and dynamic laser light scattering detector. The hydrodynamic radius of polymer fraction eluting from size-exclusion chromatography columns was obtained from dynamic laser light scattering measurements at only a single angle of 900 by introducing a correction factor. According to the scaling relationship between molecular sizes and molecular weight and the ratio between radius of gyration and hydrodynamic radius, the vinyl-type polynorbornene took a random coil conformation in 1,2,4-trichlorobenzene at 150 degreesC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The instrumental spreading of a high temperature gel permeation chromatograph (GPC) was evaluated by coupling with a two-angle laser light scattering (TALLS) detector, using narrow polystyrene, polyethylene, and syndiotactic polypropylene samples. The determined spreading factor increased with increasing molecular weight of polymers, and no maximum for spreading 174 tor was observed in the studied retention volume, while the spreading factors for single low molecular weight alkanes are independent of their molecular weight. Neglecting of the spreading effect for GPC would not introduce much error in molecular weight calculation when high quality high performance columns were used, especially when equipped with a laser light scattering detector. The scaling relationship between radius of gyration and molecular weight of polymer, determined by GPC with a TALLS detector, was independent of the instrumental spreading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mononuclear Cu-I complexes with mixed ligands are used to fabricate green phosphorescent organic light-emitting diodes. The electroluminescence (EL) maximum at 524 nm coincides well with its photoluminescent (PL) spectrum in poly(methyl methacrylate) film (see Figure). A maximum current efficiency of 10.5 cd A(-1) at 105 cd m(-2) and a maximum brightness up to 1663 cd m(-2) are

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conjugated poly(p-CN-phenylenevinylene) (PCNPV) containing both electron-donating triphenylamine units and electron-withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight-average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi-reversible oxidation with a relatively low potential because of the triphenylamine unit. A single-layer indium tin oxide/PCNPV/Mg-Ag device emitted a bright red light (633 nm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel PPV derivatives (PCA8-PV and PCA8-MEHPV) containing N-phenyl-carbazole units on the back-bone were successfully synthesized by the Wittig polycondensation of 3,6-bisformyl-N-(4-octyloxy-phenyl)carbazole with the corresponding tributyl phosphonium salts in good yields. The newly formed and dominant trans vinylene double bonds were confirmed by FT-IR and NMR spectroscopy. The polymers (with (M) over bar (w) of 6289 for PCA8-PV and 7387 for PCA8-MEHPV) were soluble in common organic solvents and displayed high thermal stability (T(g)s are 110.7 degreesC for PCA8-PV and 92.2 degreesC for PCA8-MEHPV, respectively) because of the incorporation of the N-phenyl-carbazole units. Cyclic voltammetry investigations (onsets: 0.8 V for PCA8-PV and 0.7 V for PCA8-MEHPV) suggested that the polymers possess enhanced hole injection/transport properties, which can be also attributed to the N-phenyl-carbazole units on the backbone. Both the single-layer and the double-layer light-emitting diodes (LEDs) that used the polymers as the active layer emitted a greenish-blue or bluish-green light (the maximum emissions located 494 nm for PCA8-PV and 507 nm for PCA8-MEHPV, respectively).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel hole-transporting molecules containing 1,4-bis(carbazolyl)benzene as a central unit and different numbers of diphenylamine moieties as the peripheral groups have been synthesized and characterized. These compounds are thermally stable with high glass transition temperatures of 141-157 degreesC and exhibit chemically reversible redox processes. Their amorphous state stability and hole transport properties can be significantly improved by increasing the number of diphenylamine moieties in the outer part and by controlling the symmetry of the carbazole-based molecules. These compounds can be used as good hole-tran sporting materials for organic electroluminescent (EL) devices. The device performance based on tri- and tetra-substituted carbazole derivatives is comparable to that of a typical 4,4'-bis[N-(1-naphthyl)-N-phenylamino] biphenyl (NPB)-based device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new kind of polyfluorene containing oxadiazole as the side chain was synthesized. The introduction of oxadiazole moiety as more bulky group prevents the aggregation and reduces the crystallinity of the polymers. Efficient intramolecular energy transfer from oxadiazole moiety to the conjugated backbone has been realized, leading to 70% improvement of photoluminescence quantum efficiency of the designed polymers. Compared with PAF, the PFOXD exhibits significant improvement in electroluminescence properties, with luminous efficiency of 0.8 cd/A and maximum luminance of 1800 cd/m(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light-emitting diodes exhibiting efficient pure-white-light electroluminescence have been successfully developed by using a single polymer: polyfluorene derivatives with 1,8-naphthalimide chromophores chemically doped onto the polyfluorene backbones. By adjusting the emission wavelength of the 1,8-naphthalimide components and optimizing the relative content of 1,8-naphthalimide derivatives in the resulting polymers, white-light electroluminescence from a single polymer, as opposed to a polymer blend, has been obtained in a device with a configuration of indium tin oxide/poly(3,4-ethyleiledioxythiophene)(50 nm)/polymer(80 nm)/Ca(10 nm)/Al(100 nm). The device exhibits Commission Internationale de I'Eclairage coordinates of (0.32,0.36), a maximum brightness of 11900 cd m(-2), a current efficiency of 3.8 cd A(-1), a power efficiency of 2.0 lm W-1. an external quantum efficiency of 1.50 %, and quite stable color coordinates at different driving voltages, even at high luminances of over 5000 cd m(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complexes [Cu(dnpb)(DPEphos)](+)(X-) (dnpb and DPEphos are 2,9-di-n-butyl-1,10-phenanthroline and bis[2-(diphenyl-phosphino)phenyl]ether, respectively, and X- is BF4-, ClO4-, or PF6-) can form high quality films with photoluminescence quantum yields of up to 71 +/- 7%. Their electroluminescent properties are studied using the device-structure indium tin oxide (ITO)/complex/metal cathiode. The devices emit green light efficiently, with an emission maximum of 523 nm, and work in the mode of light-emitting electrochemical cells. The response time of the devices greatly depends on the driving voltage, the counterions, and the thickness of the complex film. After pre-biasing at 25 V for 40 s, the devices turn on instantly, with a turn-on voltage of ca. 2.9 V. A current efficiency of 56 cd A(-1) and an external quantum efficiency of 16% are realised with Al as the cathode. Using a low-work-function metal as the cathode can significantly enhance the brightness of the device almost without affecting the turn-on voltage and current efficiency. With a Ca cathode, a brightness of 150 cd m(-2) at 6 V and 4100 cd m(-2) at 25 V is demonstrated. The electroluminescent performance of these types of complexes is among the best so far for transition metal complexes with counterions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the presence of biopolymer-sodium alginate as additive, Eu-doped ZnO (zinc oxide) urchins consisting of nanorods were synthesized through a hydrothermal route. X-ray diffraction pattern makes evident the absence of phase other than wurtzite ZnO. Upon excited by 325 nm xenon laser, such nanostructured Eu-doped ZnO urchins emit white light, which originates from the luminescence of ZnO and the intra-4f transitions of Eu3+ ions. Besides acting as stabilizing agent, sodium alginate may also sensitize the Eu3+ ions in the nanostructures and facilitate the energy transfer from the host to Eu3+ ions. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient white polymeric light-emitting diodes based on a white emissive polymer doped with a red phosphorescent dopant were fabricated by spin-coating method. The emission spectrum of the device is broadened to cover the full visible region by doping the red phosphorescent dye and thereby realizes white emission with high color-rendering index (CRI). By controlling the contents of the doped electron-transporting 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole and the red phosphorescent dopant, a luminous efficiency as high as 5.3 cd/A and a power efficiency of 3 lm/W were obtained with a CRI of 92.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dopant/host concept, which is an efficient approach to enhance the electroluminescence (EL) efficiency and stability for organic light-emitting diodes (OLEDs) devices, has been applied to design efficient and stable blue light-emitting polymers. By covalently attaching 0.2 mol % highly fluorescent 4-dimethylamino-1,8-naphthalimide (DMAN) unit (photoluminescence quantum efficiency: Phi(PL)=0.84) to the pendant chain of polyfluorene, an efficient and colorfast blue light-emitting polymer with a dopant/host system and a molecular dispersion feature was developed. The single-layer device (indium tin oxide/PEDOT/polymer/Ca/Al) exhibited the maximum luminance efficiency of 6.85 cd/A and maximum power efficiency of 5.38 lm/W with the CIE coordinates of (0.15, 0.19). Moreover, no undesired long-wavelength green emission was observed in the EL spectra when the device was thermal annealed in air at 180 degrees C for 1 h before cathode deposition. These significant improvements in both efficiency and color stability are due to the charge trapping and energy transfer from polyfluorene host to highly fluorescent DMAN dopant in the molecular level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A phosphorescent multiple emissive layer, in which a blue emissive layer is sandwiched between red and green ones, is employed in a white organic light-emitting device (OLED). This OLED has a maximum luminance of 48 000 cd/m(2) at 17 V, a maximum power efficiency of 9.9 lm/W at 4 V, and a color rendering index of 82. In addition, the emission color of this device is fairly stable at high luminances: its Commission Internationale de l(')Eclairage coordinate slightly changes from (0.431, 0.436) to (0.400, 0.430) when the luminance ranges from 2000 to 40 000 cd/m(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We observed that the SrMg2(PO4)(2):Eu phosphor could emit long life phosphorescence with the excitation light whose wavelength was shorter than 420 nm, however, when La, Ce, or Gd was codoped, the wavelength of the excitation light to cause the phosphorescence had a redshift of 40 nm. A possible mechanism and related discussion for this redshift phenomenon of the excitation light was given. It was suggested that the threshold between the trap and valence band was decreased with the addition of the codopants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four novel thermally stable poly(aryl ether)s, e.g., P3F, P5F, P2A3F, and P2A5K containing ter- or pentafluorene units in the side chains for efficient blue light emission have been designed and synthesized. All the polymers show the optical properties identical to the corresponding monomers and are amorphous with higher glass transition temperature (T-g) than their monomeric Counterparts. The polymer light-emitting diodes (PLEDs) were fabricated with the device structure of ITO/(PEDOT:PSS)/polymer/Ca/Al. The incorporation of diphenylamine group to oligofluorene terminals significantly reduces the hole-injection energy barrier in PLEDs. The devices based on P2A3F and P2A5F show the luminous efficiencies of 1.2 and 2.0 cd/A at a brightness of 300 cd/m(2) with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.15, 0.13) and (0.19, 0.20), respectively. All these indicate that the high-performance light-emitting polymers can be synthesized with the traditional condensation polymerization through careful design of polymer structures.