486 resultados para Ac eff rock fragm
Resumo:
Based on brief introduction of seismic exploration and it's general developing situation, the seismic exploration method in field work implementation and some problems frequently encountered in field, which should be pay attention to, are analyzed in detail. The most economic field work techniques are emphasized. Then the seismic data processing flow and it's interpretation technique about the processing results are presented. At last four examples of seismic prospecting in gold deposits are showed. The main conclusions of our research are: 1. Seismic prospecting technique is a very efficient method in the prediction of concealed gold deposits. With appropriate application, it can absolutely reflect the detail underground geological structure in the condition of rugged area and complicated geological environment. 2. The field geometry should be designed and changed according to different kinds of objective exploration depth and ground situation. The best field implementing parameters which include offset, the distance between two adjacent traces, the quantity of dynamite and the depth of hole for explosion, should be determined with examination. Only this way, the high quality original seismic data can be gotten. 3. In seismic data processing, the edition of invalid trace and source gather, signal enhancement, velocity analysis and migration are the key steps. It has some different points with conventional processing and needs a new processing flow and methods which is suitable to the data acquired in rugged area and complicated geological environment. 4. The new common reflection area stacking method in crooked line data processing is an efficient method to improve the signal to noise ratio of seismic data The innovations of our research work are: 1. In the areas which were considered to be forbidden zone, we implement the seismic exploration in several gold deposits in China through our application. All acquire distinguished effects. This show the seismic exploration method is a new effective method in the prediction of concealed gold deposits. 2. We developed a set of seismic field work techniques and data processing which is suitable to complex environment, especially find a effective method in stacking and noise elimination in crooked line data processing. 3. In the field of seismic profile interpretation, through our research work, we are convinced of that: in different kinds of geological condition, the seismic reflection character are not same. For example the lava, the intrusion rock and sediment layers are different in the character of reflection structure and strength. So we accumulate some experience about seismic data interpretation in the area of gold deposits.
Resumo:
This report is a conclusion of the major research outcome during my post-doctoral residence of research and work. Its content covers the researches of the deep thermal characteristic and dynamics evolution beneath the northern margin basin of South China Sea. In this report, the each other action and effect between lithosphere ad mantle convection were regarded by the combine of deep and shallow study, subdivision from whole to part, and pay equal attention to determine the nature and fixed quantity. The investigative method we used in this report is geothermal and gravity methods. By the help of geological model and geophysics modeling, we calculated lithosphere thermal structure, rheology structure and mantle convection. Firstly, the report introduces concisely the purpose and the previous achievement to this research. Then, it analyzed the characteristic of heat flow on South China Sea. The structure of deep temperature and thermal has been calculated in some models of heat generation and conduction. The rock rheology structure also was computed by the relationship between temperature and viscosity. All these calculations were finished under the guidelines of combine with geology and geophysics. Meanwhile, the fields both deep mantle convection and small scale upper mantle convection are computed. Beside, the density and temperature disorder resulted by mantle convection were also computed with the convection field. After these, the report bring the contribution of local field of mantle convection, thermal construct and effective viscosity beneath the northern margin basin of South China Sea. And, base on the tectonic background and evolution feature, this report discussion the evolution mechanism of south China Sea and its northern margin basin. The end of this report, the main conclusion of this research was summarized and brings out.
Resumo:
The surface of the Earth is continuously undergoing changes as a result of weathering-erosion, plate tectonics and volcanic processes. Continental weathering-erosion with its complex rock-water interactions is the central process of global biochemical cycling of elements, and affects the long-term ocean atmosphere budget of carbon dioxide both through the consumption of carbonic acid during silicate weathering and through changes in the weathering and burial rates of organic carbon. Rates of the weathering-erosion depend on a variety of factors, in particular rock properties and chemical composition, climate (especially rainfall), structure, and elevation. They are quite variable on a regional scale. Thus, environmental changes in a region could be indicated by the history of weathering-erosion in the region. Recent attention has focused on increased silicate weathering of tectonically uplifted areas in the India-Asia collision zone as a possible cause for falling atmospheric CO_2 levels in the Cenozoic era. The wind blown dust deposits in the Loess Plateau is derived from the arid and semiarid regions in northwestern China, in turn, where the deposits have been derived from the Qinghai-Xizang Plateau and the high mountains around. Therefore, geochemistry of the wind blown loess-paleosol and red clay sequences may provide insight both to paleoenvironmental changes on the Loess Plateau, and to the uplift and weathering-erosion histories of the Qinghai-Xizang Plateau. In this paper, uranium-thorium series nuclides and cosmogenic ~(10)Be have been employed as tracers of weathering intensities and histories of the dust sediments in the Loess Plateau. Major elements, such as Na, Al, Fe etc., are also used to estimate degree of chemical alteration of the dust sediments and to rebuild the history of weathering on the Loess Plateau. First of all, using a low-level HPGe γ-ray detector, we measured U and Th series nuclides in 170 loess and paleosol samples from five sites in the Loess Plateau, going back 2.6 Ma. The results show that ~(238)U activities are disequilibrium with its daughter nuclide ~(230)Th in young loess-paleosol sequence, indicating that weathering was happened both in dust deposition site and in dust source regions. Using concentrations of ~(238)U and ~(232)Th in the samples, we estimated the amounts of ~(238)U leached out of from paleosols due to weathering. Further, based on analyses of ~(230)Th in paleosols deposited in the past ca. 140 ka, we determined when the paleosols weathered in the source regions. We conclude that most of the weathering in the dust-source regions may have occurred during the interglacials before dust deposition.
Resumo:
Based on the temperature data from 196 wells and thermal conductivity measurements of 90 rock samples, altogether 35 heat flow data are obtained. The results show that the Junggar basin is a relatively "cold basin" at present. The thermal gradients vary between 11.6 and 26.5 ℃/km, and the thermal conductivity change from 0.17 to 3.6 W/mK. Heat flow ranges from 23.4 to 53.7 mW/m~2 with a mean of 42.3 ± 7.7 mW/m~2. The heat flow pattern shows that heat flow is higher on the uplifts and lower on the depressions. The overall low present-day heat flow in the Junggar Basin reflects its stable cratonic basement and Cenozoic tectonothermal evolution characterized by lithospheric thickening, thrust and fault at shallow crust as well as consequently quick subsidence during the Late Cenozoic. The study of the basin thermal history, which is one of the important content of the basin analysis, reveals not only the process of the basin's tectonothermal evolution, but also the thermal evolution of the source rocks based on the hydrocarbon generation models. The latter is very helpful for petroleum exploration. The thermal history of the Junggar basin has been reconstructed through the heat flow based method using the VR and Fission track data. The thermal evolutions of main source rocks (Permian and Jurassic) and the formations of the Permian and the Jurassic petroleum systems as well as the influences of thermal fields to petroleum system also have been discussed in this paper. Thermal history reconstruction derived from vitrinite reflectance data indicates that the Paleozoic formations experienced their maximum paleotemperature during Permian to Triassic with the higher paleoheat flow of around 70-85 mW/m~2 and the basin cooled down to the present low heat flow. The thermal evolution put a quite important effect on the formation and evolution of the petroleum system. The Jurassic petroleum system in the Junggar basin is quite limited in space and the source rocks of Middle-Lower Jurassic entered oli-window only along the foreland region of the North Tianshan belt, where the Jurassic is buried to the depth of 5-7 km. By contrast, the Middle-Lower Permian source rocks have initiated oil and gas generation in latter Permian to Triassic, and the major petroleum systems, like Mahu-West Pen 1 Well, was formed prior to Triassic when later Paleozoic formation reached the maximum paleotemperature.
Resumo:
The engineering geological properties of Neogene hard clays and related engineering problems are frontiers in the fields of Engineering Geology, Soil Mechanics and Rock Mechanics. Recently, it has been recognized that Neogene hard clay is the intermediate type of material between the soil and the rock. Many aspects of them, such as sampling, testing, calculating and engineering process, are special, which could not be researched by means of theories and methods of traditional Soil Mechanics of Rock Mechanics. In order to get real knowledge and instruct the engineering practice, intersect studying of multiple disciplines, including Engineering Geology, Soil Mechanics and Rock Mechanics, etc., is necessary. Neogene hard clay is one of the important study objects of regional problem rocks & soils in our country, which extensively distributed in China, especially in Eastern China. Taking the related areas along the middle line of the Project of Transferring Water from the South to the North (e.g. Nanyang basin, Fangcheng-Baofeng area and Handan-Yongnian area), South-west of Shandong, Xu-Huai area and Beijing area, etc. as main study areas, the paper divided Neogene hard clays into reduction environment dominated origin and oxidation environment dominated origin, which distributed on areas western and eastern to Mount Taihangshan respectively. Intermediate types are also existed in some areas, which mainly distribute near the edges of depositional basins; they are usually of transitions between diluvial and lacustrine deposits. As to Neogene hard clays from Eastern China, the clay particle content is high, and montmorillonite or illite/montmorillonite turbostratic mineral is the dominating clay mineral. The content of effective montmorillonite is very high in each area, which is the basis for the undesirable engineering properties of Neogene hard clays. For hard clays from the same area, the content of effective montmorillonite in gray-greenish hard clay is much higher than that in purple-brownish or brown-yellowish hard clay, which is the reason why the gray-greenish hard clay usually has outstanding expansive property. On the other hand, purple-brownish or brown-yellowish hard clay has relatively less montmorillonite, so its property is better. All of these prove that the composition (clay mineral) of Neogene hard clay is the control factor for the engineering properties. Neogene hard clays have obvious properties such as fissured, overconsolidated and expansive, which are the main reasons that many engineering problems and geological harzards usually occur in Neogene hard clays. The paper systematically elaborates the engineering properties of Neogene hard clays from Eastern China, analyses the relationships between engineering properties and basic indexes. The author introduces the ANN method into the prediction of engineering property indexes of hard clays, which provides a new way for quantitatively assessment and prediction of engineering property indexes. During investigation in the field, the author found that there exists obvious seam-sheared zone between different hard clays in Miocene Xiacaowan formation in Xu-Huai area. Similar phenomenon also exists near the borderline between Neogene hard clays and underlying coal measures in the Southwest of Shandong province, which could be observed in the cores. The discovery of seam-sheard zone has important theoretical and practical significance for engineering stability analysis and revealing the origin of fissures in Neogene hard clays. The macrostructure, medium structure and microstructure together control the engineering properties of hard clays. The author analyses and summarizes the structural effects on hard clays in detail. The complex of the strength property of hard clays is mostly related to the characteristics of fissures, which is one of the main factors that affect the choice of shear strength parameters. So structure-control theory must be inseparably combined with composition-control theory during the engineering geological and rock/soil mechanics research of hard clays. The engineering properties, such as fissured, overconsolidated and expansive, control the instability of engineering behaviors of Neogene hard clays under the condition of excavation, i.e. very sensitive to the change of existence environment. Based on test data analysis, the author elaborates the effects of engineering environment change on the engineering properties. Taking Nanyang basin as example, the author utilizes FEM to study the effects of various factors on stability of cutting canal slopes, than sets forth the characteristics, development laws and formation mechanism of the deformation and failure of hard clay canal slopes, summarizes the protection and reinforcement principles, as well as the protection and remedy steps. On the basis of comparison of engineering properties of domestic and foreign Neogene muddy deposits, in the view of whole globe and associated with the geological characteristics of China, the paper demonstrates that the intermediate type of the material between the soil and the rock, named "hard clay/soft rock", which can not be separated abruptly, really exists in China. The author has given a preliminary classification based on its geological origin and distribution law, which is very significant for promoting the mixture of Engineering Geology, Soil Mechanics and Rock Mechanics. In the course of large scales engineering construction in China, many engineering experiences and testing data are gained, summarizing these testing results and automatically managing them with computer technology are very necessary. The author develops a software named "Hard Clay-Soft Rock Engineering Geological Information Management and Analysis System (HRGIMS)", realizes the automatic and visual management of geo-engineering information, on the basis of information management, the functions of test data analysis and engineering property prediction are strengthened. This system has well merits for practice and popularization.
Resumo:
Livingston Island, the second island of South Shetland Island, constains Mesozoic-Cenozoic basement, Mesozoic-Cenozoic volcanic sequences, plutonic intrusions and post-subduction volcanic rocks, which document the history and evolution of an important part of the South Shetland Islands magmatic arc. The sedimentary sequence is named the Miers Bluff Formation (MBF) and is interpreted as turbidite since the first geological study on South Shetland Islands, and is interpreted as turbidite. It base and top are not exposed, but a thickness of more than 3000m has been suggested and seems plausible. The turbidite is overlain by Mid - Cretaceous volcanic rocks and intruded by Eocene tonalites. The age of the Miers Bluff Formation is poorly constrained Late Carboniferous -Early Triassic. Sedimentary Environment, tectonic setting and forming age of sedimentary rocks of the Miers Bluff Formation were discussed by means of the methods of sedimentology, petrography and geochemistry, combinig with the study of trace fossils and microfossil plants. The following conclusions are obstained. A sedimentary geological section of Johnsons Dock is made by outside measuring and watching, and then according the section, the geological map near the Spanish Antarctic station was mapped. Four pebbly mudstone layers are first distinguished, which thickness is about 10m. The pebbly mudstone is the typical rock of debris flow, and the depostional environment of pebbly mudstone may be the channel of mid fan of submarine fan. The sedimentsry structural characteristics and size analysis of sandstones show the typical sedimentary feature of turbidity flow and the Miers Bluff Formation is a deep-water turbidite (include some gravity-flow sediments). The materials of palaeocurrents suggest the continental slope dip to southeast, and indicate the provenance of turbidity sediment in the northwest area. By facies analysis, six main facies which include seven subfacies were recognized, which are formed in mid-fan and lower-fan of submarine, meanwhile, the sedimentary features of each facies and subfacies are summarized. The study of clastic composition, major elements, trace elements and rare earth elements indicates the forming setting of the Miers Bluff Formaton is active continental margin and continental island arc and the provenance is dissected magmatic arc which main composition is felsic gneiss. Many trace fossils of the whole succession were found in the turbidites of the Miers Bluff Formation. All these trace fossils are deep sea ichnofossils. There are fifteen ichnogenus, sixteen ichnospecies. Moreover, a new trace fossil was found and a new ichnogenus and new ichnospecies was proposed - Paleaichnus antarctics ichnogen, et ichnosp, nov.. Except the new ichnogenus and ichnospecies, others had been found in deep-sea flysch turbidites. Some are in mudstone and are preserved in the cast convex of overlying sandstone sole, they formed before turbidity flows occurred and belong to the high-different Graphoglyptida of fiysch mudstone. Others as Fucusopsis and Neonereites are preserved in sandstones and stand for trace assemblages after turbidity sedimentation. These trace fossils are typical members of abyssal "Nereites" ichnofacies, and provide for the depositional environment of the Miers Bluff Formation. Fairly diverse microfossil plants have been recovered from the Miers Bluff Formation, Livingston Island, including spores, pollen, acritarchs, wood fragments and cuticles. Containing a total of about 45 species (forms) of miospores, the palynofiora is quantitatively characterized by the dominance of non-striate bisaccate pollen, but spores of pteridophytes and pollen of gymnosperms are proportionate in diversity. It is somewhat comparable to the subzone C+D of the Alisporites zone of Antarctica, and the upper Craterisporites rotundus zone and the lower Polycingulatisporites crenulatus zone of Australia, suggesting a Late Triassic (possibly Norian-Rhaetian) age, as also evidenced by the sporadic occurrence of Aratrisporites and probable Classopollis as well as the complete absence of bisaccate Striatiti. The parent vegetation and paleoclimate are preliminarily deduced. At last, the paper prooses the provenance of sedimentary rocks of the Miers Bluff Formation locates in the east part to the southern Chile(or Southern South American). In the Triassic period, contrasting with New Zealand, Australia and South American of the Pacific margin of Gondwanaland, the Miers Bluff Formation is deposited in the fore-arc basin or back-arc basin of magmatic arc.
Resumo:
According to the basic geologic conditions, the paper is directed by the modem oil-gas accumulation theory and petroleum system in which typical oil pools are analyzed and the shape of lithologic trap and geologic factors are pointed out. The process during which oil and gas migrate from source rock to lithologic trap is rebuilt, and the accumulation model of oil pool is set up. With the comprehensive application of seismic geologic and log data and paying attention to the method and technology which is used to distinguish lithologic accumulation. Promising structural-lithofacies zones are got and the distribution rule of various lithologic accumulation is concluded. With making use of the biologic mark compound, different reservoirs are compared. As a result, the oil and gas in HeiDimiao come from Nenjiang Group's source rocks; in SaErTu from QingShenkou Group's and Nenjiang Group's, and in PuTaohua. GaoTaizi and FuYang from QingShankou Group's. According to the development and distribution of effective source rock, oil distribution and the comparison in the south of SongLiao basin, the characteristic of basin structure and reservoir distribution is considered, and then the middle-upper reservoir of SongLiao basin south are divided into two petroleum system and a complex petroleum system. Because of the characteristic of migration and accumulation, two petroleum systems can furtherly be divided into 6-7 sub-petroleum systems,20 sub-petroleum systems in all. As a result of the difference of the migration characteristic, accumulation conditions and the place in the petroleum system, the accumulation degree and accumulation model are different. So three accumulation mechanism and six basic accumulation model of lithologic trap are concluded. The distribution of lithologic pools is highly regular oil and gas around the generation sag distribute on favorable structural-lithofacies zones, the type of lithological pool vary regularly from the core of sandstone block to the upper zone. On the basic of regional structure and sedimentary evolution, main factors which control the form of trap are discovered, and it is the critical factor method which is used to discern the lithologic trap. After lots of exploration, 700km~2 potential trap is distinguished and 18391.86 * 10~4 tons geologic reserves is calculated. Oil-water distribution rule of pinch-out oil pool is put up on plane which is the reservoirs can be divided into four sections. This paper presented the law of distribution of oil and water in updip pinch-out reservoir, that is, hydrocarbon-bearing formation in plane can be divided into four zones: bottom edge water zone, underside oil and water zone, middle pure oil zone and above residual water zone. The site of the first well should be assigned to be middle or above pure oil zone, thus the exploration value of this type of reservoir can be recognized correctly. In accordance with the characteristics of seism and geology of low permeability thin sandstone and mudstone alternation layer, the paper applied a set of reservoir prediction technology, that is: (1)seism multi-parameter model identification; (2) using stratum's absorbing and depleting information to predict reservoir's abnormal hydrocarbon-bearing range. With the analysis of the residual resource potential and the research of two petroleum system and the accumulation model, promising objective zones are predicted scientifically. And main exploration aim is the DaRngZi bore in the west of ChangLin basin, and YingTai-SiFangZi middle-upper assembly in Honggang terrace.
Resumo:
Jiaodong Peninsula is the largest repository of gold in China. Varieties of studies have been involved in the mechanism of metallogenesis. This thesis is a part of the project "Study of basic geology related to the prespecting of the supra-large deposits" which supported by National Climbing Program of China to Prof. Zhou. One of the key scientific problems is to study the age and metallogenic dynamics of ore deposit and to understand how interaction between mantle and crust constrains on metallogenesis and lithogenesis. As Jiaodong Peninsula to be study area, the Rb-Sr, Sm-Nd and Pb isotopic systematics of pyrite and altered rocks are measured to define the age and origin of gold. The elemental and Sr-Nd-Pb isotopic compositions of dikes and granites was studied to implicate the source and lithogenesis of the dike and granite and removal of lithosphere and the interaction between mantle and crust in the Jiaodong Peninsula. Considering the tectonic of Jiaodong Peninsula, basic on the time and space, this thesis gives a metallogenic dynamics of gold mineralization and discusses the constraints of the interaction between mantle and crust on the metallogenesis and lithogenesis. This thesis reports the first direct Rb-Sr dating of pyrites and ores using sub-sampling from lode gold deposit in Linglong, Jiaodong Peninsula and the results demonstrate this as a useful geochronological technique for gold mineralization with poor age constraint. The Rb-Sr data of pyrites yields an isochron age of (121.6-122.7) Ma, whereas, those of ore and ore-pyrite spread in two ranges from 120.0 to 121.8 Ma and 110.0-111.7 Ma. Studies of characteristic of gold deposit, microscopy of pyrite and quartz indicate that the apparent ages of ore and ore-pyrite are not isochron ages, it was only mixed by two end members, i.e., the primitive hydrothermal fluids and wall rocks. However, the isochron age of pyrite samples constrains the age of gold mineralization, i.e., early Cretaceous, which is in good consistence with the published U-Pb ages of zircon by using the SHRIMP technique. The whole rock Rb-Sr isochron age of altered rocks indicates that the age of gold mineralizing in the Xincheng gold deposit is 116.6 ± 5.3 Ma. The Sr, Nd and Pb isotopic compositions of pyrite and altered rocks indicate that the gold and relevant elements were derived from multi-sources, i.e. dikes derived from enriched lithospheric mantle and granites, granodiorites and metamorphic rocks outcropped on the crust. It also shows that the hydrothermal fluids derived from mantle magma degassing had play an important role in the gold mineralizing. The major and trace elements, Sr-Nd-Pb isotopic data of granites and granodiorites suggest that the Linglong Granite and Kunyushan Granite were derived from partial melting of basement rocks in the Jiaodong Peninsula at post-collision of North China Craton with South China Craton. Guojialing Granodiorite was considered to be derived from a mixture source, that is, mixed by magmas derived from an enriched lithospheric mantle and crust during the delamination of lithosphere induced by the subduction of Izanagi Plate and the movement of Tancheng-Lujiang Fault. There are kinds of dikes occurred in the Jiaodong Peninsula, which are accompanying with gold mineralization in time and space. The dikes include gabrro, diabase, pyroxene diorite, gabrrophyre, granite-porphyry, and aplite. The whole rock K-Ar ages give two age intervals: 120-124 Ma for the dikes that erupted at the gold mineralizing stage, and <120 Ma of the dikes that intruded after gold mineralizing. According to the age and the relationship between the dikes and gold mineralizing, the dikes could be divided into two groups: Group I (t = 120-124 Ma) and Group II (t < 120Ma). Group I dikes show the high Mg and K, low Ti contents, negative Nb anomalies and positive Eu anomalies, high ~(87)Sr/~(86)Sr and negative εNd(t) values and an enrichment in light rare earth elements, large ion lithosphile elements and a depletion in high field strength elements. Thus the elemental and isotopic characteristics of the Group I dikes indicate that they were derived from an enriched lithospheric mantle perhaps formed by metasomatism of the melt derived from the recycled crustal materials during the deep subduction of continent. In contrast, the Group II dikes have high Ti, Mg and K contents, no negative Nb anomalies, high ~(87)Sr/~(86)Sr and positive or little negative εNd(t) values, which indicate the derivation from a source like OIB-source. The geochemical features also give the tectonic constraints of dikes, which show that Group I dikes were formed at continental arc setting, whereas Group II dikes were formed within plate background. Considering the tectonic setting of Jiaodong Peninsula during the period of gold mineralizing, the metallogenic dynamics was related to the subduction of Izanagi Plate, movement of Tancheng-Lujiang Fault and removal of lithopheric mantle during Late Mesozoic Era.
Resumo:
The dynamic environments of mineralization in Mesozoic Jiaodong gold mine concentrated area can be devided into two types, compressive environment which related to intracontinental collision and extensional environment which related to intracontinental volcanic rift. The altered rock type (Jiaojia type) and quartz vein type (Linglong type) which related to the former one, were discovered for several years, and became the main types of gold deposits in recent years. A new type gold deposit, syn-detachment altered tectonic breccia type gold deposit, such as Pengjiakuang gold deposit and Songjiagou gold deposit has been discovered on the northeastern margin of Jiaolai Basin. In this paper, the new type of gold deposit has been studied in detail. The study area is located at the northeastern boundaries of Jiaolai Basin, and between the Taocun-Jimo Fault and Wji-Haiyang Fault, in the eastern part of the Jiaodong Block. Pengjiakuang gold deposit and Songjiagou gold deposit occur in a arc-shape detachment fault zone between conglomerate of Lower Cretaceous Laiyang Formation and metamorphic complex of Lower Proterozoic Jingshan Group. Regional geological studies show that Kunyuanshan and Queshan granite intrusions and Qingshanian volcanism were formed in different period of lithospheric thinning of East China in Mesozoic. Granite intrusions were formed in compressive environment, while Qingshanian volcanism were formed in extensional environment. They are all related to the detachment of Sulu Orogenic Belt and the sinistral motion of Tanlu Fault. The Pengjiakuang detachment systems which were formed in the the sinistral motion of Tanlu Fault are the important ore-controlling and ore-containing structure. The Pengjiakuang type gold deposit, controlled by detachment structure, was formed before Yanshanian volcanic period concerning with mixture of meteoric water and magmatic water found in fluid inclusions of gold ores. The minerogenetic epoch has been proposed in 90~120Ma. the host rocks have been extensively subjected to pyritization, silicification, sericitization and carbonatization. Individual ore-body has maximum length of 800m, oblique extension of 500~700m and gold grade of 1~43 * 10~(-6). Native gold is disseminated in silicified, phyllic or carbonatized tectonic breccia. Sulfur, carbon and lead isotope studies on gold ores and wall rocks show that the sulfur come from the metamorphic complex of Lower Proterozoic Jingshan Group, carbon comes from the marble in Jingshan Group, while a part of lead comes from the mantle. The mineralizing fluid is rich in Na~+ and Cl~-, but relatively impoverished in K~+ and F~-. According to the date from hydrogen and oxygen isotopic compositions (δ~(18)OH_2O = 0.59%~4.03%, δDH_2O = -89.5%~97.9%), the conclusion can be reached that the mineralizing fluid of Pengjiakuang gold deposit was a kind of mixed hydrothermal solution which was mainly composed of meteoric water and magmatic water. A genetical model has been formulated. Some apparent anomaly features which show low in the central part and high in the both sides corresponding to the gold-bearing structure, were sum up after analying a vast amount of date by prospecting the orebodies using gamma-ray spectrometer, electrogeochemical parameter technique, controlled source audio magnetic telluric (CSAMT) and shallow surface thermometry in Pengjiakuang gold deposit. The location forecasting problem of buried orebodies has been solved according to these features, and the successful rate is very high in well-drilling. The structural geological-geophysical-geochemical prospecting model has been formulated on the base of the study of geological, geophysical and geochemical characteristics of Pengjiakuang type gold deposit, and the optimum combinational process of geophysical and geochemical prospecting techniques has been summed up. A comparative study shows that the Pengjiakuang type gold deposit, the syn-detachment altered tectonic breccia type gold deposit, is different from Jiaojia type gold deposits and Linglong type gold deposits, in Jiaodong Block. In general, if formed under an extensional tectonic condition and located at detachment fault zone along the margin of Mesozoic Jiaolai basin, and the gold mineralization has also close genetic relationship with alkaline magamtism. Being a new type of gold deposit in Jiaodong gold mine concentrated area, it could be potential to explore in the same regions which processed the same ore-forming geological conditions and mineralization informations.
Resumo:
The study of pore structure in reservoir was paid attention to in the early reservoir research and now a systematic research methodology is set up. On the limits of tools and conditions, methodologies and technologies on formation condition and distribution laws of pore structure and the relationship between remaining oil distribution and pore structure are uncertain and some knownage about it is also uncertain. As the development of petroleum industry, the characterization of pore structure and the prediction of remaining oil are the hot spot and difficult point in the research of oil development. The author pays a close attention to this subject and has done much research on it. In a case study in Linnan oilfield Huimin sag Jiyang Depression Bohai Bay basin by using a new method, named varied scale comprehensive modeling of pore structure, the author builds pore structure models for delta reservoir, reveals the remaining oil distribution laws in delta facies, and predicts the distribution of remaining oil in Linnan oilfield. By the application of stratigraphy, sedimentology and structure geology. the author reveals the genetic types of sandbody and its distribution laws, builds the reservoir geological models for delta sandstone reservoir in Shahejie group in Linnan oilfield and points out the geological Factors that control the development of pores and throats. Combining petrology and the reservoir sensitive analysis, the author builds the rock matrix models. It is the first time to state that rocks in different sentimental micro facies have different sensitive .response to fluid pressed into the rocks. Normally. the reservoirs in the delta front have weaker sensitivity to fluid than the reservoirs in delta plain, In same subfacies, the microfacies that have fine grain, such as bank and crevasse splay, have stronger reservoir sensitivity than the microfacies that have coarse grains, such as under-water branched channel and debauch bar. By the application of advanced testing, such as imagine analysis, scan electronic microscope, and morphology method, the author classifies the pore structure and set up the distribution models of pore, throat and pore structure. By the application of advanced theory in well-logging geology, the author finds the relationship between microscope pore structure and macroscopic percolation characteristics, and then builds the well-logging interpretation formulae for calculating pore structure parameters. By using the geostatistics methods, the author reveals the spatial correlative characteristics of pore structure. By application of conditional stochastic simulation methods, the author builds the 3D models of pore structure in delta reservoir. It is the base of predicting remaining oil distribution. By a great deal of experiments and theoretical deduction, The author expounds the laws of percolation flow in different pore structures, and the laws by which the pore structure controls the micro distribution of remaining oil, and then, states the micro mechanism of remaining oil distribution. There are two types of remaining oil. They are by-pass flow caused by micro-fingering and truncation caused by non-piston movement. By new method, the author states the different pore structure has different replacement efficiency, reveals the formation condition and distribution laws of remaining oil. predicts the remaining oil distribution in Linnan oil field, and put forward some idea about how to adjust the oil production. The study yielded good results in the production in Linnan oilfield.
Resumo:
The Derni large Cu-Co-Zn sulfide deposit is occurred in the Derni melange belt, which is located in the eastern section of the A'nyemaqen ophiolite melange belt. The Derni deposit is hosted in the mantle peridotites and is very special in the world. Because the studying area is of very bad natural environment and very low geological research, the geotectonic setting and genesis of the deposit have long been debated. This paper studied these two questions and answered them. The research is of great significance to reveal impotant information of deep geology, crust-mantle interaction and geotectonic evolution, to enrich theories in the study of mineral deposit and provide scientific basic data for exploration and exploit of this kind of deposit. Based on the series of new achievements and new cognitions, to start with the geologic setting of the Derni deposit, through detailed field, tectonics, petrology, geochemistry, isotopic geochronology, microfossil, and study of mineral deposit, belongs to a melange belt, including mantle peridotites slice with ore, Late Precambrian sandstone and slate slice, metamorphic rock slice. 2. Petrological and geochemical characteristics indicate that the Derni mantle peridotite is not ophiolite mantle peridotite, but is occurred under the continental crust. 3. The U-Pb isotopic age of single-grain zircon form the accumulative rock suggests that the Derni mantle peridotite were formed in 747±10Ma, and underwent a great period of metamorphic process in 441.5±2.5Ma. 4. Microfossil assemblage from the carbonaceous slate belongs to Late Precambrian. Through petrography and petrochemistry, sandstone and slate were formed in the continental margin. 5. Sideronitic texture, which is first discovered in this study, reveals the characteristics of magmatic liquation. 6. Fluid inclusion explosion temperature of pyrite is in the range of -6.15~+6.64‰, and Pb isotope is consistent with mantle peridotite, which suggest ore-forming materials are from the mantle. To sum up, the upper mantle was melting partially, when it was metasomated by the mantle fluids with abundant Cu, Co, Zn, S, Au and LREE etc. The pockets of magma became enlarged by mantle tenacity shearing, and the pockets of magma occurred magmatic differentiation in the stable field, then the magma and ore pulp together with mantle refractory remnant dirpired and crystallized in the shallow part of the crust.
Resumo:
The Study on rheology of the lithosphere and the environments of the seismogenic layer is currently the basic project of the international earthquake research. Yunnan is the ideal place for studying this project. Through the multi-disciplinary comprehensive study of petrology, geophysics, seismo-geology, rock mechanics, etc., the depth-strength profiles of the lithosphere have been firstly constructed, and the seismogenic layer and its geophysical and tectonic environments in Yunnan have been systematically expounded in this paper. The related results achieved are of the important significances for further understanding the mechanism of strong earthquake generation, dividing the potential foci and exposing recent geodynamical processes in Yunnan. Through the comprehensive contrast of the metamorphic rocks in early and middle Proterozoic outcropping on the surface, DSS data and experimental data of rock seismic velocity under high temperature and high pressure, the petrological structure of the crust and upper mantle has been studied on Yunnan: the upper, middle and lower crust is composed of the metamorphic rocks of greenschist, amphibolite and granulite facies, respectively or granitoids, diorites and gabbros, respectively, and the upper mantle composed of the peridotites. Through the contrast studies of the heat flow and epicenters of the strong earthquakes, the distribution of the geotemperature and the data of focal depth, the relationship of between seismicity and geothermal structure of the lithosphere in Yunnan has been studied: the strong earthquakes with magnitude M ≥ 6.0 mainly take place at the geothermal gradient zone, and the seismic foci densely distribute between 200~500 ℃ isogeotherms. On the basis of studies of the rock properties and constituents of the crust and upper mantle and geothermal structure of the lithosphere, the structure of the rheological stratification of the lithosphere has been studied, and the corresponding depth-strength profiles have been constructed in Yunnan. The lithosphere in majority region of Yunnan has the structure of the rheological stratification, i.e. the brittle regime in the upper crust or upper part of the upper crust, ductile regime in the middle crust or lower part of the upper crust to middle crust, ductile regime in the lower crust and ductile regime in the subcrustal lithosphere. The rheological stratification has the quite marked lateral variations in the various tectonic units. The distributions of the seismogenic layer have been determined by using the high accurate data of focal depth. Through the contrast of the petrological structure, the structure of seismic velocity, electric structure, geotemperature structure, and rheological structure and the study of the focal mechanism in the seismogenic layer, the geophysical environments of the seismogenic layer in Yunnan have been studied. The seismogenic layer in Yunnan is located at the depths of 3 ~ 20 km; the rocks in the seismogenic layer are composed of the metamorphic rocks of greenschist to amphibolite facies (or granites to diorites); the seismogenic layer and its internal focal regions of strong earthquakes have the structure of medium properties with the relatively high seismic velocity, high density and high resistivity; there exists the intracrustal low seismic velocity and high conductivity layer bellow the seismogenic layer, the geotemperature is generally 100~500 ℃ in the depth range in which the seismogenic layer is located. The horizontal stress field predominates in the seismogenic layer, the seismogenic layer corresponds to the brittle regime of the upper crust or brittle regime of the upper crust to semibrittle regime of the middle crust. The formation of the seismogenic layer, preparedness and occurrence of the strong earthquakes is the result of the comprehensive actions of the source fault, rock constituent, structure of the medium properties, distribution of the geotemperature, rheological structure of the seismogenic layer and its external environments. Through the study of the structure, active nature, slip rate, segmentation of the active faults, and seismogenic faults, the tectonic environments of the seismogenic layer in Yunnan have been studied. The source faults of the seismogenic layer in Yunnan are mainly A-type ones and embody mainly the strike slip faults with high dip angle. the source faults are the right-lateral strike slip ones with NW-NNW trend and left-lateral strike slip ones with NE-NEE trend in Southwestern Yunnan, the right-lateral strike slip ones with NNW trend and left-lateral strike slip ones with NNE trend (partially normal ones) in Northwestern Yunnan, the right-lateral strike slip ones with NWW trend in Central Yunnan and left-lateral strike slip ones with NW-NNW trend in Eastern Yunnan. Taking Lijiang earthquake with Ms = 7.0 for example. The generating environments of the strong earthquake and seismogenic mechanical mechanism have been studied: the source region of the strong earthquake has the media structure with the relatively high seismic velocity and high resistivity, there exists the intracrustal low velocity and high conductivity layer bellow it and the strong earthquakes occur near the transitional zone of the crustal brittle to ductile deformation. These characteristics are the generality of the generating environments of strong earthquakes. However, the specific seismogenic tectonic environments and action of the stress field of the seismic source in the various regions, correspondingly constrains the dislocation and rupture mechanical mechanism of source fault of strong earthquake.
Resumo:
Since the discovery of coesite-bearing eclogites in Dabie and Sulu region over ten years ago, the Dabie collisional orogen has been the "hot-spot" across the world. While many great progresses have been made for the last decade in the researches on the Dabie and Sulu UHP metamorphic rocks in the following fields, such as, petrology, mineralogy, isotope chronology, and geochemistry, the study of the structural geology on the Dabie orogen is still in great need. Thrust and nappe tectonics commonly developed in any collisional orogenic belt during the syncollisional process of the orogen. It is the same as the Dabic collisional orogen is concerned. The paper put much stress on the thrust and nappe tectonics in the Dabic orogenic belt, which have been seldom systematically studied before. The geometric features including the division and the spatial distribution of various thrust and nappe tectonics in the Dabie orogen have been first studied, which is followed by the detailed studies on their kinematic characteristics in different scales varying from regional tectonics to microtectonics. In the thesis, new deformation ages have been obtained by the isotopic methods of ~(40)Ar-~(39)Ar, Sm-Nd and Rb-Sr minerals-whole rock isochrons on the mylonites formed in three ductile shear zones which bounded three different major nappes in the Dabie collisional orogenic belt. And the petrological, geochemical characteristics of some metamorphic rocks as well as the geotectonics of their protoliths, which have also deformed in the ductile shear zone, are analyzed and discussed. In the paper, twelve nappes in the Dabie orogen are first divided, which are bounded by various important NWW or NW-strike faults and three NNE-strike faults. They are Shangcheng Nappe, Huoshan Nappe, Yuexi Nappe, Yingshanjian-Hengzhong Nappe, Huangzhen Nappe, Xishui-Huangmei Nappe, Zhoudang Nappe, Suhe-Huwan Nappe, Xinxian Nappe, Hong'an Nappe, Mulan Nappe and Hhuangpi-Susong Nappe. In the Dabie orogen, three types of thrust and nappe tectonics belonging to two stages have been confirmed. They are: (1) early stage ductile thrust -nappe tectonics which movement direction was top-to-the-south; (2) late stage brittle to ductile-brittle thrust-nappe tectonics which are characterized by double-vergence movement, including top-to-the-north and top-to-the-south; (3) the third type also belongs to the late stage which also characterized by double-vergence movement, including top-to-the-east and top-to-the-west, and related to the strike-slip movement. The deformation ages of both Wuhe-Shuihou ductile shear zone and Taihu-Mamiao ductile shear zone have been dated by ~(40)Ar-~(39)Ar method. ~(40)Ar/~(39)Ar plateau ages of biotite and mica from the mylonites in these two shear zones are 219.57Ma and 229.12Ma. The plateau ages record the time of ductile deformation of the ductile shear zones, which made the concerned minerals of the mylonites exhume from amphibolite facies to the middle-upper crustal conditions by the early stage ductile thrust-nappe tectonics. The mineral isochons of Sm-Nd and Rb-Sr dating on the same mylonite sample of the metamafic rocks are 156.5Ma and 124.56Ma respectively. The two isochron ages suggest that the mylonitic rock strongly deformed in the amphilbolite facies at 156Ma and then exhumed to the upper crustal green schist condition at 124Ma with the activities of the Quiliping-Changlinggang ductile shear zone which bounded to the southen edge of Xinxian Nappe. Studies of the petrological and geochemical characteristics of some meta-mafic rocks and discussion on the geotectonics of their protoliths indicate that their protoliths were developped in an island arc or back-arc basin or active continental margin in which calc-alkline basalts formed. This means that arc-accretion orogeny had evolved in the margins of North china plate and/or Yangtze plate before these two plates directly collided with each other during the evolution process of Dabie orogen. Three-stage evolution of the thrust-nappe tectonics in Dabie collisional orogen has been induced based on the above-mentioned studies and previous work of others. And a possible 3-stage exhumation model (Thrust-Positive Flower Structure Model) has also been proposed.
Resumo:
The research on mechanical effects of water-rock and soil interaction on deformation and failure of rocks and soils involves three aspects of mechanics, physics and chemistry. It is the cross between geochemistry and rock mechanics and soil mechanics. To sum up, the mechanical effects of water-rock and soil interaction is related to many complex processes. Research in this respect has been being an important forward field and has broad prospects. In connection with the mechanism of the effects of the chemical action of water-rock on deformation and failure of rocks and soils, the research significance, the present state, the developments in this research domain are summarized. Author prospects the future of this research. The research of the subject should be possessed of important position in studying engineering geology and will lead directly to a new understand on geological hazard and control research. In order to investigation the macroscopic mechanics effects of chemical kinetics of water-rock interaction on the deformation and failure, calcic rock, red sandstone and grey granite reacting chemically with different aqueous solution at atmospheric temperature and atmospheric pressure are uniaxially compressed. The quantitative results concerning the changes of uniaxially compressive strength and elastic modulus under different conditions are obtained. It is found that the mechanical effects of water on rock is closely related to the chemical action of water-rock or the chemical damage in rock, and the intensity of chemical damage is direct ratio to the intensity of chemical action in water-rock system. It is also found that the hydrochemical action on rock is time-dependent through the test. The mechanism of permeation and hydrochemical action resulting in failure of loaded rock mass or propagation of fractures in rocks would be a key question in rock fracture mechanics. In this paper, the fracture mechanical effects of chemical action of water-rock and their time- and chemical environment-dependent behavior in grey granite, green granite, grey sandstone and red sandstone are analyzed by testing K_(IC) and COD of rock under different conditions. It is found that: ①the fracture mechanical effect of chemical action of water-rock is outstanding and time-dependent, and high differences exist in the influence of different aqueous solution, different rocks, different immersion ways and different velocity of cycle flow on the fracture mechanical effects in rock. ②the mechanical effects of water-rock interaction on propagation of fractures is consistent with the mechanical effects on the peak strength of rock. ③the intensity of the mechanical fracture effects increases as the intensity of chemical action of water-rock increases. ④iron and calcium ion bearing mineral or cement in rock are some key ion or chemical composition, and especially iron ion-bearing mineral resulting in chemical action of water-rock to be provided with both positive and negative mechanical effects on rock. Through the above two tests, we suggest that primary factors influencing chemical damage in rock consist of the chemical property of rock and aqueous solution, the structure or homogeneity of rocks, the flow velocity of aqueous solution passing through rock, and cause of formation or evolution of rock. The paper explores the mechanism on the mechanical effects of water-rock interaction on rock by using the theory of chemistry and rock fracture mechanics with chemical damage proposed by author, the modeling method and the energy point of view. In this paper, the concept of absorbed suction between soil grains caused by capillary response is given and expounded, and the relation and basic distinction among this absorbed suction, surface tension and capillary pressure of the soil are analyzed and established. The law of absorbed suction change and the primary factors affecting it are approached. We hold that the structure suction are changeable along with the change of the saturation state in unsaturated soils. In view of this, the concept of intrinsic structure suction and variable structure suction are given and expounded, and this paper points out: What we should study is variable structure suction when studying the effective stress. By IIIy κHH's theory of structure strength of soils, the computer method for variable structure suction is analyzed, the measure method for variable structure suction is discussed, and it reach the conclusions: ①Besides saturation state, variable structure suction is affected by grain composition and packing patter of grains. ②The internal relations are present between structure parameter N in computing structure suction and structure parameter D in computing absorbed suction. We think that some problems exit in available principle of effective stress and shear strength theory for unsaturated soil. Based on the variable structure suction and absorbed suction, the classification of saturation in soil and a principle of narrow sense effective stress are proposed for unsaturated soils. Based on generalized suction, the generalized effective stress formula and a principle of generalized effective stress are proposed for unsaturated soils. The experience parameter χ in Bishop's effective stress formula is defined, and the principal factors influencing effective stress or χ. The primary factor affecting the effective stress in unsaturated soils, and the principle classifying unsaturated soils and its mechanics methods analyzing unsaturated soils are discussed, and this paper points out: The theory on studying unsaturated soil mechanics should adopt the micromechanics method, then raise it to macromechanics and to applying. Researching the mechanical effects of chemical action of water-soil on soil is of great importance to geoenvironmental hazard control. The texture of soil and the fabric of soil mass are set forth. The tests on physical and mechanical property are performed to investigate the mechanism of the positive and negative mechanical effects of different chemical property of aqueous solution. The test results make clear that the plastic limit, liquid limit and plasticity index are changed, and there exists both positive and negative effects on specimens in this test. Based on analyzing the mechanism of the mechanical effects of water-soil interaction on soil, author thinks that hydrochemical actions being provided with mechanical effects on soil comprise three kinds of dissolution, sedimentation or crystallization. The significance of these tests lie in which it is recognized for us that we may improve, adjust and control the quality of soils, and may achieve the goal geological hazard control and prevention.The present and the significance of the research on environmental effects of water-rock and soil interaction. Various living example on geoenvironmental hazard in this field are enumerated. Following above thinking, we have approached such ideals that: ①changing the intensity and distribution of source and sink in groundwater flow system can be used to control the water-rock and soil interaction. ②the chemical action of water-rock and soil can be used to ameliorate the physical and mechanical property of rocks and soils. Lastly, the research thinking and the research methods on mechanical effects and environmental effects of water-rock and soil interaction are put forward and detailed.
Resumo:
Mafic granulite xenoliths have been extensively concerned over the recent years because they are critical not only to studies of composition and evolution of the deep parts of continental crust but to understanding of the crust-mantle interaction. Detailed petrology, geochemistry and isotope geochronology of the Early Mesozoic mafic-ultramafic cumulate xenoliths and mafic granulite xenoliths and their host diorites from Harqin area, eastern Inner-Mongolia have been studied here. Systematic Rb-Sr isochron, ~(40)Ar-~(39)Ar and K-Ar datings for mafic-ultramafic cumulate xenoliths give ages ranging from 237Ma to 221Ma. Geochemical research and forming temperature and pressure estimates suggest that cumulates are products of the Early Mesozoic mantle-derived magmatic underplating and they formed in the magmatic ponds at the lowermost of the continental crust and are later enclaved by the dioritic magma. Detailed study on the first-discovered mafic granulite xenoliths reveals that their modal composition, mineral chemistry and metamorphic P-T conditions are all different from those of the Precambrian granulite exposed on the earth surface of the North China craton. High-resolution zircon U-Pb dating suggests that the granulite facies metamorphism may take place in 253 ~ 236Ma. Hypersthene single mineral K-Ar dating gives an age of 229Ma, which is believed to represent a cooling age of the granulite. As the host rock of the cumulate and granulite xenoliths, diorites intruded into Archean metamorphic rocks and Permian granite. They are mainly composed of grandodiorite, tonalite and monzogranite and show metaluminous and calc-alkaline features. Whole rock and single mineral K-Ar dating yields age of 221 ~ 223Ma, suggesting a rapid uplift in the forming process of the diorites. Detailed field investigation and geochemical characteristics indicate that these diorites with different rock types are comagmatic rocks, and they have no genetic correlation with cumulate and granulite xenoliths. Geochemical model simulating demonstrates that these diorites in different lithologies are products of highly partial melting of Archean amphibolite. It is considered that the Early Mesozoic underplating induced the intrusion of diorites, and it reflects an extensional geotectonic setting. Compression wave velocity V_P have been measured on 10 representative rock samples from the Early Mesozoic granulite and mafic-ultramafic cumulate xenoliths population as an aid to interpret in-situ seismic velocity data and investigating velocity variation with depth in a mafic lower crust. The experiments have been carried out at constant confining pressures up to 1000MPa and temperatures ranging from 20 ℃ to around 1300 ℃, using the ultrasonic transmission technique. After corrections for estimated in situ crustal pressures and temperatures, elastic wave velocities range from 6.5 ~ 7.4 km s~(-1). On the basis of these experimental data, the Early-Mesozoic continental compression velocity profile has also been reestablished and compared with those of the present and of the different tectonic environments in the world. The result shows that it is similar to the velocity structure of the extensional tectonic area, providing new constraints on the Early Mesozoic continental structure and tectonic evolution of the North-China craton. Combining with some newly advancements about the regional geology, the thesis further proposes some constraints on the Mesozoic geotectonic evolution history, especially the features of deep geology of the North China craton.