377 resultados para relativistic heavy-ion collisions
Resumo:
Hepatoma and melanoma cells were exposed to C-12(6+) beams generated by HIRFL facility and gamma-rays and the cell response was studied by colony assays as well as the analysis of RBE of carbon ions was evolved. The survival curves of cells irradiated by heavy ions were different from those of cells irradiated by gamma-rays. And two kinds of cell showed the obvious discrepancy in response to the photon and ion irradiation. The results showed that heavy ions have special physical properties and mighty potency to kill cell in both single and fractional irradiation meanwhile it can kill tumor cells with high radioresistance more efficiently. When involved in clinical therapy, heavy ions will enhance the therapy efficiency and decrease the suffering of patients because it can impair the repair for sublethal damage of cells which can lead to fewer irradiation fractions.
Resumo:
Polycarbonate (PC) membranes were irradiated with swift heavy ions and latent tracks were created along the ions' trajectories. Nanopores, diameters between 100 and 500 nm, were obtained after illuminating the membranes with UV light and etching in NaOH solution. Silver nanowires were produced in the etched ion-track membranes by electrochemical deposition. The morphology and crystallinity of the silver nanowires were studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). Under certain conditions (deposition voltage 25 mV, current density 1-2 mA.cm(-2), temperature 50 degrees C, electrolyte 0.1 mol.L-1 AgNO3), single-crystalline silver nanowires with preferred orientation along the [111] direction can be synthesized.
Resumo:
The relative partial cross sections for C-13(6+)-Ar collisions at 4.15-11.08 keV/u incident energy are measured. The cross-section ratios sigma(2E)/sigma(SC), sigma(3E)/sigma(SC), sigma(4E)/sigma(SC) and sigma(5E)/sigma(SC) are approximately the constants of 0.51 +/- 0.05, 0.20 +/- 0.03, 0.06 +/- 0.03 and 0.02 +/- 0.01 in this region. The significance of the multi-electron process in highly charged ions (HCIs) with argon collisions is demonstrated (sigma(ME)/sigma(SC) as high as 0.79 +/- 0.06). In multi-electron processes, it is shown that transfer ionization is dominant while pure electron capture is weak and negligible. For all reaction channels, the cross-sections are independent of the incident energy in the present energy region, which is in agreement with the static characteristic of classic models, i.e. the molecular Coulomb over-the-barrier model (MCBM), the extended classical over-the-barrier (ECBM) and the semiempirical scaling laws (SL). The result is compared with these classical models and with our previous work of C-13(6+)-Ne collisions
Resumo:
Employing the recoil ion momentum spectroscopy we investigate the collision between He2+ and argon atoms. By measuring the recoil longitudinal momentum the energy losses of projectile are deduced for capture reaction channels. It is found that in most cases for single- and double-electron capture, the inner electron in the target atom is removed, the recoil ion is in singly or multiply excited states (hollow ion is formed), which indicates that electron correlation plays an important role in the process. The captured electrons prefer the ground states of the projectile. It is experimentally demonstrated that the average energy losses are directly related to charge transfer and electronic configuration.
Resumo:
Highly oriented pyrolytic graphite (HOPG) samples were irradiated by Xe ions of initial kinetic energy of 3 MeV/u. The irradiations were performed at temperatures of 500 and 800 K. Scanning tunneling microscopy (STM) images show that the tracks occasionally have elongated structures under high-temperature irradiation. The track creation yield at 800 K is by three orders of magnitude smaller compared to that obtained during room-temperature irradiation. STM and Raman spectra show that amorphization occurs in graphite samples irradiated at 500 K to higher fluences, but not at 800 K. The obtained experimental results clearly reveal that the irradiation under high temperature causes track annealing.
Resumo:
The main ion beams acceleration facilities and research fields of the Institute of Modern Physics (IMP) are briefly introduced. Some of the experimental instruments, typical works and the obtained results on the materials research with swift heavy ions at the IMP-accelerators are presented.
Resumo:
State-selective single electron capture cross sections are measured by recoil ion momentum spectroscopy technique for He2+ on He at 30 keV incident energy. The cross sections for capture into ground and excited states are obtained and compared to classical model calculations as well as to the quantum mechanical calculations. The experimental results are in good agreement with quantum mechanical results.
Resumo:
The axially deformed relativistic mean field theory with the force NLSH has been performed in the blocked BCS approximation to investigate the proper-ties and structure of N=Z nuclei from Z=20 to Z=48. Some ground state quantities such as binding energies, quadrupole deformations, one/two-nucleon separation energies, root-mean-squaxe (rms) radii of charge and neutron, and shell gaps have been calculated. The results suggest that large deformations can be found in medium-heavy nuclei with N=Z=38-42. The charge and neutron rms radii increase rapidly beyond the magic number N=Z=28 until Z=42 with increasing nucleon number, which is similar to isotope shift, yet beyond Z=42, they decrease dramatically as the structure changes greatly from Z=42 to Z=43. The evolution of shell gaps with proton number Z can be clearly observed. Besides the appearance of possible new shell closures, some conventional shell closures have been found to disappear in some region. In addition, we found that the Coulomb interaction is not strong enough to breakdown the shell structure of protons in the current region.
Resumo:
The processes of transfer ionization in He2+ -He collisions at energies ranging from 20 to 40 keV have been studied experimentally by means of cold target recoil ions momentum spectroscopy. From the longitudinal momentum spectra of recoil ions, different mechanisms of transfer ionization have been obtained. The results show that one of the electrons of helium atom being captured into the ground state of projectile ion He2+ and the other one emitted to the continuum state of projectile or target are the dominant mechanisms of transfer ionization. The autoionization cross section of projectile after two-electron capture into a double excited state is small. Transfer ionization for one target electron capture into ground state and the other one into the continuum of projectile mainly occurs at large impact parameter collisions.
Resumo:
This paper calculates the electron impact excitation rate coefficients from the ground term 2s(2)2p(2) P-3 to the excited terms of the 2s(2)2p(2), 2s2p(3), 2s(2)2p3s, 2s(2)2p3p, and 2s(2)2p3d configurations of N II. In the calculations, rnulticonfiguration Dirac-Fork wave functions have been applied to describe the target-ion states and relativistic distorted-wave calculation has been performed to generate fine-structure collision strengths. The collision strengths are then averaged over a Maxwellian distribution of electron velocities in order to generate the effective collision strengths. The calculated rate coefficients are compared with available experimental and theoretical data, and some good agreements are found for the outer shell electron excitations. But for the inner shell electron excitations there are still some differences between the present calculations and available experiments.
Resumo:
The stabilization ratios.. for double-electron transfer, i.e., the cross section ratios of true double capture to total double-electron transfer, are measured in O6++ He, Ne and Ar collisions at 6 keV/u. A high.. value about 68% is obtained for the He target, while for the Ar target, the.. value is only 8%. The high R value for the He target is due to the significant direct population of the (2l, nl') configurations with high n For the Ar target, the (quasi) symmetric configurations (3l, nl') lead to the much lower.. value. Neglecting the core effects, the O6+ ion can be taken as a bare ion C6+ except the occupied 1s shell, and then the measured R values are compared with previous experimental results of C6+ projectile ions at similar impact velocity. It yields good agreement with the Ne and Ar target, while the occupied 1s shell for the O6++ He system results in a higher R value than that in C6++He collisions.
Resumo:
The fully consistent relativistic continuum random phase approximation (RCRPA) has been constructed in the momentum representation in the first part of this paper. In this part we describe the numerical details for solving the Bethe-Salpeter equation. The numerical results are checked by the inverse energy weighted sum rules in the isoscalar giant monopole resonance, which are obtained from the constraint relativistic mean field theory and also calculated with the integration of the RCRPA strengths. Good agreement between the misachieved. We study the effects of the self-consistency violation, particularly the currents and Coulomb interaction to various collective multipole excitations. Using the fully consistent RCRPA method, we investigate the properties of isoscalar and isovector collective multipole excitations for some stable and exotic from light to heavy nuclei. The properties of the resonances, such as the centroid energies and strength distributions are compared with the experimental data as well as with results calculated in other models.
Resumo:
This paper reports that the K x-ray spectra of the thin target 47Ag, 48Cd, 49In and 50Sn were measured by an HPGe semi-conductor detector in collisions with 84.5 MeV 6C4+ ions. Our experiment revealed the Kα x-ray energy shifts were not obvious and the Kβ1 x-ray energy shifts were about 90∼110 eV. The simple model of Burch et al has been previously used to calculate the K x-ray energy shifts due to an additional vacancy in 2p orbit. The present work extends the model of Burch to calculate the x-ray energy shifts of multiple ionized atoms induced by heavy ions with kinetic energy of MeV/u. In addition to our experimental results, many other experimental results are compared with the calculated values by using the model.
Resumo:
Chitosan(chitin)/cellulose composites as biodegradable biosorbents were prepared under an environment-friendly preparation processes using ionic liquids. Infrared and X-ray photoelectron spectra indicated the stronger intermolecular hydrogen bond between chitosan and cellulose, and the hydroxyl and amine groups were believed to be the metal ion binding sites. Among the prepared biosorbents, freeze-dried composite had higher adsorption capacity and better stability. The capacity of adsorption was found to be Cu(II) (0.417 mmol/g) > Zn(II) (0.303 mmol/g) > Cr(VI) (0.251 mmol/g) > Ni(II) (0.225 mmol/g) > Ph(II) (0.127 mmol/g) at the same initial concentration 5 mmol L-1. In contrast to some other chitosan-type biosorbents, preparation and component of the biosorbent were obviously more environment friendly. Moreover, adsorption capacity of chitosan in the blending biosorbent could be fully shown.
Resumo:
In the present paper, the adsorption of thulium(Ill) from chloride medium on an extraction resin containing bis(2,4,4-trimethylpentyl) monothiophosphinic acid (CL302, HL) has been studied. The results show that 1.5 h is enough for the adsorption equilibrium. The distribution coefficients are determined as a function of the acidity of the aqueous phase and the data are analyzed both graphically and numerically. The plots of log D versus pH give a straight line with a slope of about 3, indicating that 3 protons are released in the adsorption reaction of thulium(III). The content of Cyanex302 in the resin is determined to be 48.21%. The total amount of Tm3+ adsorbed up to resin saturation is determined to be 82.46 mg Tm3+/g resin. Therefore, the sorption reactions of Tm3+ from chloride medium with CL302 can be described as: Tm3+ + 3HL((r)) <----> TmL3(r) + 3H(+) The Freundlich's isothermal adsorption equation is also determined as: log Q = 0.73 log C + 3.05 The amounts (Q) of Tm3+ adsorbed with the resin have been studied at different temperatures (15-40degreesC) at fixed concentrations of Tm3+, amounts of extraction resin, ion strength and acidities in the aqueous phase.