389 resultados para Weak interactions (Nuclear physics)
Resumo:
In this paper, the design and analysis of a new low noise charge sensitive preamplifier for silicon strip, Si(Li), CdZnTe and CsI detectors etc. with switch control feedback resistance were described, the entire system to be built using the CMOS transistors. The circuit configuration of the CSP proposed in this paper can be adopted to develop CMOS-based Application Specific Integrated Circuit further for Front End Electronics of read-out system of nuclear physics, particle physics and astrophysics research, etc. This work is an implemented design that we succeed after a simulation to obtain a rise time less than 3ns, the output resistance less than 94 Omega and the linearity almost good.
Resumo:
Mass measurements of exotic nuclei is a fast, developing field which is essential for basic nuclear physics and a wide range of applications. The method of storage ring mass spectrometry has many advantages: (1) a large amount of nuclides can be simultaneously measured; (2) very short-lived (T-1/2 greater than or similar to 50 mu s) and very rare species (yields down to single ions) can be accessed; (3) nuclides in several atomic charge states can be investigated, (4) half-life measurements can be performed with time-resolved mass spectrometry. In this contribution we concentrate on some recent achievements and future perspectives of the storage ring mass spectrometry.
Resumo:
The present study reports the possibility that the tetrahedral symmetry may manifest itself in superheavy elements through the nortaxial octupole Y-32 deformation. The calculations of nortaxial octupole bands are performed by using the Reflection Asymmetric Shell Model for some transfermium nuclei where the spectroscopic data are available, and a very good agreement between theory and experiment has been achieved.
Resumo:
The HIRFL complex, the commissioning of HIRFL-CSR, and the nuclear physics experiments at HIRFL-CSR are briefly introduced.
Resumo:
A master equation is constructed to treat the nucleon transfer process in heavy ion fusion reactions to form superheavy nucleus. The relative motion concerning the energy, the angular momentum and the fragment deformation relaxations is explicitly treated to couple with the diffusion process. The nucleon transition probabilities, which are derived microscopically, are thus time dependent. The calculated evaporation residue cross-sections for both cold and hot fusion are in good agreement with the known experimental data.
Resumo:
Within the concept of the dinuclear system (DNS), a dynamical model is used for describing the formation of superheavy residues in massive fusion reactions, in which the capture of two colliding nuclei, the formation and de-excitation of the compound nucleus are described by using a barrier distribution method, solving master equations numerically and statistical approach, respectively. Using the DNS model, the production cross sections of superheavy nuclei are calculated and compared with the available experimental data. The isotopic dependence of the cross sections to produce the superheavy element Z=116 by the two types of the reactions is discussed and the possible reasons influencing the isotopic trends are analyzed systematically.
Resumo:
Recoiled proton tagged knockout reaction experiments were carried-out for He-8 at 82.5 MeV/u in RIKEN and for He-6 at 65 MeV/u in Lanzhou. The very preliminary results for the distinguish of the reaction mechanism are presented and compared to the kinematics calculation.
Resumo:
The sputtered particle yields produced by Pbq+ (q=4-36) with constant kinetic energy bombardment on An surface were measured. The sputtering Could be separated to two parts: no potential sputtering is observed when q<24 (E-pot = 9.6 keV) and the sputtering yield increases with E-pot(1.2) for the higher charge states of q >= 24. The potential sputtering is mainly contributed by the relaxation of electronic excitations on target surface produced by the potential energy transfer from projectile to target atoms.
Resumo:
We estimate the two-photon exchange corrections to both proton and neutron electromagnetic physical observables in a relativistic light cone quark model At a fixed Q(2) the corrections are found to be small in magnitudes. but strongly dependent oil scattering angle Our results are comparable to those obtained from simple hadronic model in the medium momentum transfer region (C) 2009 Elsevier B V All rights reserved
Resumo:
The inelastic component of the key astrophysical resonance (1(-), E-x=6.15 MeV) in the O-14(alpha,p)F-17 reaction has been studied by using the resonant scattering of F-17+p. The experiment was done at REX-ISOLDE CERN with the Miniball setup. The thick target method in inverse kinematics was utilized in the present experiment where a 44.2 MeV F-17 beam bombarded a similar to 40 mu m thick (CH2)(n) target. The inelastic scattering protons in coincidence with the de-excited 495 keV gamma rays have been clearly seen and they are from the inelastic branch to the first excited state in F-17 following decay of the 1(-) resonance in Ne-18. Some preliminary results are reported.
Resumo:
Within the framework of the dinuclear system (DNS) model, the production cross sections of superheavy nuclei Hs (Z=108) and Z=112 combined with different reaction systems are analyzed systematically. It is found that the mass asymmetries and the reaction Q values of the projectile target combinations play a very important role on the formation cross sections of the evaporation residues. Both methods to obtain the fusion probability by nucleon transfer by solving a set of microscopically derived master equations along the mass asymmetry degree of freedom (ID) and distinguishing protons and neutrons of fragments (2D) are compared with each other and also with the available experimental data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Efforts have been made in our group to study the band structure of odd-odd nuclei in the A similar to 170 mass region. We aimed at providing new data of high-spin states and searching for the low-spin signature inversion in the 2-qp bands built on the pi h(9/2) circle times nu i(13/2) and pi i(13/2)circle times nu i(13/2) configurations. In this talk, main results of our work will be summarized, and some systematic features of signature inversion discussed. The spin and parity assignments for the pi i(13/2) circle times nu i(13/2) band in (184)An could be regarded as firm providing a good example for systematic and theoretical investigations.
Resumo:
Recent experimental advances have made it possible to study spectroscopy in very heavy nuclei. We show that from the excited high-spin structure of transfermium isotopes, one may gain useful information on single-particle states for the superheavy mass region, which is the key to locating the anticipated 'island of stability'. In this work, we employ the Projected Shell Model for Cf, Fm, and No isotopes to study rotation alignment of the particles that occupy particular high-j intruder orbitals.
Resumo:
A series of experiments have been performed by complete kinematics measurements to study two-proton (2p) correlated emission from the excited states of Ne-17,Ne-18 and S-28,S-29 via the Coulomb excitation by bombarding on Au-197 target. 2p and residua coincident events were picked Out under strict conditions. Visible p-p correlations were observed. It is shown that 2p can be emitted from the high-lying excited states. 2p halo may lead to 2p emission with large spectroscopy factor for the states close to or beyond the threshold.
Resumo:
We present the multiplicity and pseudorapidity distributions of photons produced in Au + Au and Cu + Cu collisions at root(NN)-N-s = 62.4 and 200 GeV. The photons are measured in the region -3.7 < eta < -2.3 using the photon Multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of (lie collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for An + Au and Cu + Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for root(NN)-N-s = 62.4 and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of eta-Y-beam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies. (C) 2009 Elsevier B.V. All rights reserved.