393 resultados para Ultraviolet photodetector
Resumo:
Luminescent thin films of heteropolytungstate complexes containing lanthanide (europium or samarium) were successfully fabricated by the Langmuir-Blodgett (LB) technique. The pressure-area isotherm of the monolayer of dimethyldioctadecylammonium. bromide (DODA) is modified rather markedly when the subphase contains the complex of Na9EuW10O36 or Na9SmW10O36. The above results indicate that the monolayer of DODA has a strong interaction with the polyanions of EuW10O369-. (or SmW10O369-). X-ray photoelectron spectra and fluorescent spectra verify that europium and tungsten atoms are 36 36 incorporated into the LB films. Ultraviolet (UV), fluorescent spectra and low-angle X-ray diffraction experiments demonstrate that these LB films have a well-defined lamellar structure. The LB film containing EuW10O369- can give off strong fluorescence 16 on UV irradiation. The characteristic emission behaviors of europium ions in LB films and in the powder of Na9EuW10O369- are discussed. It is found that the intensity ratio of the D-5(0)-F-7(2) transition to the D-5(0)-->F-7(1) transition in LB film is quite different from that in the powder of Na9EuW10O36. The difference of the ratio indicates that the site symmetry of europiurn is distorted in LB film, which is probably due to the strong electrostatic interactions between DODA and polyanions.
Resumo:
Biphenyl- (Biph-) containing 1-alkynes (3 and 4) and their polymers (1 and 2) with varying bridge groups and spacer lengths were synthesized and the effects of the structural variation on their properties, especially their mesomorphism and photoluminescence behaviors, were studied. The acetylene monomers 3(3) [HCdropC(CH2)(3)O-Biph-OCO(CH2)(10)CH3] and 4(m) [HCdropC(CH2)(m)OCO-Biph-OCO(CH2)(10)-CH3, m = 3, 4] were prepared by sequential etherization and esterification reactions of 1-alkynes. While 3(3) exhibits enantiotropic crystal E and SmB mesophases, its structural cousin 4(3) displays only a monotropic SmB phase. Enantiotropic SmA and SmB mesophases are, however, developed when the spacer length is increased to 4. Polymerizations of the monomers are effected by Mo-, W-, Rh-, and Fe-based catalysts, with the WCl6-Ph4Sn catalyst giving the best results (isolation yield up to 85% and M-w up to 59000). The polymers were characterized by IR, UV, NMR, TGA, DSC, POM, XRD, and PL analyses. Compared to 1(3), 2(3) shows a red-shifted absorption, a higher T-i, and a better packed interdigitated bilayer SmA(d) structure, while the mesophase of 2(4) involves monolayer-packing arrangements of the mesogens. Upon photoexcitation, 1(3) emits almost no light but 2(m) gives a strong ultraviolet emission (lambda(max) similar to 350 nm), whose intensity increases with the spacer length.
Resumo:
Microporous silica gel has been prepared by the sol-gel method utilizing the hydrolysis and polycondensation of tetraethylorthosilicate (TEOS). The gel has been doped with the luminescent ternary europium complex Eu(TTA)(3)(.)phen: where HTTA=1-(2-thenoyl)-3,3,3-trifluoracetone and phen=1,10-phenanthroline. By contrast to the weak f-f electron absorption bands of Eu3+, the complex organic ligand exhibits intense near ultraviolet absorption. Energy transfer from the ligand to Eu3+ enables the production of efficient, sharp visible luminescence from this material. Utilizing the polymerization of methyl methacrylate, the inorganic/polymer hybrid material containing Eu(TTA)(3)(.)phen has also been obtained. SEM micrographs show uniformly dispersed particles in the nanometre range. The characteristic luminescence spectral features of europium ions are present in the emission spectra of the hybrid material doped with Eu(TTA)(3)(.)phen.
Resumo:
Naphthalene-labeled polypropylene (PP) was prepared by melt reaction of maleic anhydride-grafted-polypropylene (PP-g-MA) with 1-aminonaphthalene in a Barabender mixer chamber. The structure of the product was analyzed with fourier transform infrared (FT-IR), ultraviolet (UV) and fluorescence. The results showed that naphthyl groups grafted onto the PP molecular chains through the imide bonds formed between MA and 1-aminonaphthalene. The content of the chromophores was 1.8 X 10(-4) mol g(-1) measured by elemental analysis. Isothermal crystallization behavior was studied by differential scanning calorimeter (DSC). Labeled PP had a higher crystallization rate than PP-g-MA. Wide-angle X-Ray diffraction (WAXD) analysis revealed that labeled PP had higher crystallinity than PP-g-MA.
Resumo:
The (Y, Gd) BO3 : Eu phosphor was synthesized by solid-state reaction, The UV spectra showed that in a certain range of Gd3+ concentration, more Gd3+ absorbed energy and transferred it to Eu3+ with its increasing concentration. From the spectra in VUV region, it was observed that both the doping and the concentrations of Gd3+, Eu3+ greatly affected the absorption of the host lattice. The absorbances at 147 nm and 170 nm increased when the Gd3+ was doped which can be explained as that Gd3+ transferred energy to BO4. The optical properties of (Y, Gd)BO3 : Eu were the best when the concentration of Eu3+ was about 0.04.
Resumo:
Vacuum ultraviolet excitation spectra of LnAl(3)B(4)O(12):Re (Ln = Y, Gd; Re = Eu, To), along with X-ray photoelectron spectra, were measured. The spectra are tentatively interpreted in terms of the optical properties of the rare earth ions and the band structure. It was found that there is an energy transfer from the hosts to the rare earth ions. It was also found that the top of the valence band in the Gd compound is mainly formed by the 2p levels of O2- and the 4f levels of Gd3+, and in the Y compound mainly by the 2p levels of O2-. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Microporous silica gel has been prepared by the sol-gel method utilizing the hydrolysis and polycondensation of tetraethylorthosilicate (TEOS). The gel has been doped with the luminescent ternary europium complex Eu(TTA)(3). phen: where HTTA = 1-(2-thenoyl)-3,3,3-trifluoracetone and phen = 1,10-phenanthroline. By contrast to the weak f-f electron absorption bands of Eu3+, the complex organic ligand exhibits intense near ultraviolet absorption. Energy transfer from the ligand to Eu3+ enables the production of efficient, sharp visible luminescence from this material. Utilizing the polymerization of methyl methacrylate or ethyl methacrylate, the inorganic/polymer hybrid materials containing Eu(TTA)(3). phen have also been obtained. SEM micrographs show uniformly dispersed particles in the nanometre range. The characteristic luminescence spectral features of europium ions are present in the emission spectra of the hybrid material doped with Eu(TTA)3 phen. (C) 2000 Kluwer Academic Publishers.
Resumo:
The effect of the amount of the catalyst FeCl3, used during the direct oxidation polymerization, on the structure and properties of the obtained poly(3-dodecylthiophene) (P3DDT) was investigated in this paper. Such measurements as gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectroscopy, thermal analysis, X-ray diffraction, infrared spectroscopy (FTIR) and ultraviolet-visible (W-vis) spectroscopy were applied. It is found that a suitable addition of FeCl3 can contribute to generate a P3DDT with greater percentage of head-to-tail head-to-tail (HT-HT) linkages, which are generally favored. The reduction of the other linkage defects helps to lengthen conjugation length, thus leading to more orderly chain packing. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
In order to investigate the influence of different alkyl side chain substitution on the structures and properties of P3ATs, X-ray diffraction, differential scanning calorimetry (DSC), thermal gravity analysis (TGA), Fourier transform infrared spectra (FTIR) and ultraviolet-visible spectra (W-VIS) were applied to characterizing the samples of ploy(3-octylthiophene) (P3OT), poly(3-dodecylthiophene) (P3DDT) and poly(3-octadecylthiophene) (P3ODT). It is found that the different length of alkyl group substitution leads to great difference in molecular chain packings, according to the room temperature X-ray diffraction results. The temperature dependence of X-ray diffraction experiments were also performed to study the melting processes of P3ATs. With the increase in the number of carbon atoms in alkyl side chains, the melting point decreases, and the thermal stability decreases too. The results of both FTIR and W-VIS spectra indicate that the conjugation length of P3DDT is the longest. among the three P3ATs. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The photochromism in CaS:Sm (from white to pink) was observed for the first time by exposing it to ultraviolet light. The experiments results show that the absorption intensity of Sm2+ in the range of 500 similar to 600nm was strongly increased after irradiation. This reveals that there is the valence changing of Sm. If the sample was excited by visible light again, the pink color turned to white, indicating that CaS:Sm has potential application in the field of storage material.
Resumo:
A series of copolyimides were prepared from 2,4,6-trimethyl-1,3-phenylenediamines (3MPDA), 3,3',4,4'-benzophenone tetracarboxyl dianhydride (BTDA), and pyromellitic dianhydride (PMDA). Modification of the copolyimides by ultraviolet irradiation were carried out. Gas permeabilities of H-2, O-2, and N-2 through the copolyimides and photochemically crosslinked copolyimides were measured at temperatures from 30 to 90 degrees C. The relationships between gas permeabilities and temperature are in agreement with the Arrhenius equation. The structure of photochemically crosslinked copolyimides were characterized by Fourier transform infrared and gel measurement methods. Linear relationships between both log P and E-p and the volume fraction of PMDA-3MPDA exist. Photochemically crosslinking modification result in a decrease in gas permeability and an increase in E-p and alpha(H-2/N-2) for all the copolyimides. For H-2/N-2 separation, photochemically crosslinked copolyimides are of higher gas permeabilities and permselectivities simultaneously than normal polyimides. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Fluorescence of terbium(III) was sensitized when excited in the presence of sparfloxacin (SPFX) in the aqueous solution because a Tb(III)-SPFX complex was formed. The sensitized fluorescence was further enhanced when this system was exposed to 365 nm ultraviolet light. By the spectral properties and contrast experiments, it is proved that irradiation makes this system undergo photochemical reactions and a new terbium complex which is more favorable to the intramolecular energy transfer is formed. The mechanism of photochemical fluorescence enhancement of the Tb(III)-SPFX system is discussed and a new sensitive and selective photochemical fluorimetry for the determination of SPFX is established. Under the optimum conditions, the linear range is 1.0-50 x 10(-7) M for SPFX, the detection limit is 3.0 x 10(-9) M and the R.S.D. for 5.0 x 10(-7) M SPFX is 1.3% (n = 9). Without any pretreatment the recovery of SPFX in human urine was determined with satisfaction. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Polyaniline is prepared by chemical polymerization of aniline in an acidic solution using H2O2 as an oxidant and ferrous chloride as a catalyst. A wide variety of synthesis parameters are studied, such as the amount of the catalyst, reaction temperature, reaction time, initial molar ratio of oxidant, monomer and catalyst, and aniline and HCl concentrations. The polymerization of aniline can be initiated by a very small amount of catalyst. The yield and the conductivity of product depend on the initial molar ratio of the oxidant and monomer. The polyaniline with a conductivity of about 10 degrees S/cm and a yield of 60% is prepared under optimum conditions. The process of polymerization was studied by in situ ultraviolet-visible spectroscopy and open-circuit potential technology. Compared to the polymerization process in a (NH4)(2)S2O8 system, the features of the H2O2-Fe2+ system are pointed out, and the chain growth mechanism is proposed. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Lomefloxacin (LMFX) and terbium ion can form a complex and the sensitized fluorescence of the terbium ion can be observed. It was found that the sensitized fluorescence intensity can be notably enhanced when the terbium complex is exposed to 365 nm ultraviolet light. By the fluorescence spectra, phosphorescence spectra, fluorescence quantum yield and fluorescence lifetime of the system, it was proved that irradiation of the complex made it undergo a photochemical reaction and a new terbium complex which is more favorable to intramolecular energy transfer was formed. This is why the sensitized fluorescence enhancement can be observed. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The diffuse reflectance spectra of nanocrystalline Nd2O3 were measured in the ultraviolet-visible region, It is found that the part of f-->f transition bands were widened and red-shift occurred. The absorption tail-band in the region from 300 to 550 nm was assigned to the O-2p-->Nd-4f transition. The behavior of light-induced charge transfer and photovoltaic properties of nanocrystalline Nd2O3 were studied by the surface photovoltage spectroscopy (SPS) and electric field modulating SPS techniques. The SPS response shows two peaks at 330 nm(P-1) and 380 nm(P-2) in the UV-Vis range, The spectral features observed can be explained in terms of charge transfer and interband transition.