380 resultados para RARE EARTHS COMPOUNDS
Resumo:
The Mg-8Gd-0.6Zr-xEr (x = 1, 3 and 5 mass%) alloys were prepared by casting technology, and the microstructures, age hardening behaviors and mechanical properties of alloys have been investigated. Microstructures of the alloys are characterized by the presence of rosette-shaped equiaxed grains. The age hardening behaviors and the tensile properties are enhanced by adding Er element. The maximum aged hardness of Mg-8Gd-0.6Zr-5Er alloy is 97, it is nearly 1.24 times higher than that of Er-free alloy.
Resumo:
Die-cast Mg-4Al-0.4Mn-xNd(x = 0, 1, 2, 4 and 6 wt.%) magnesium alloys were prepared successfully and influences of Nd on the microstructure, mechanical properties and corrosion behavior of the Mg-4Al-0.4Mn alloy have been investigated. The results showed that with the addition of Nd binary Al2Nd phase and Al11Nd3 phase. which mainly aggregated along the grain boundaries, were formed, and the relative ratio of above two phases was in correlation with the Nd content in the alloy. Meanwhile, the grain sizes were greatly reduced with the increasing Nd content. It was found that due to the addition of Nd both the tensile properties and corrosion resistance were improved substantially.
Structures and physical properties of n=3 Ruddlesden-Popper compounds Ca4Mn3-xNbxO10 (0 <= x <= 0.2)
Resumo:
The Ruddlesden-Popper series of compounds Ca4Mn3-xNbxO10(x = 0-0.2) have been prepared by solid-state methods. Structural, magnetic, electrical, and magnetoresistive studies were performed on the compounds. Nb doping caused increases in both unit cell volume and octahedral distortion. The magnetization measurements indicated that the doped samples displayed ferromagnetism-like behavior, which could be explained by the double-exchange interaction between Mn4+ and Mn3+ induced by the charge-compensation effect.
Resumo:
Lewis base modification strategy on rare earth ternary catalyst was disclosed to enhance nucleophilic ability of active center during copolymerization of carbon dioxide and propylene oxide (PO), poly(propylene carbonate) (PPC) with H-T linkages over 83%, and number-average molecular weight (M-n) up to 100 kg/mol was synthesized at room temperature using Y(CCl3OO)(3)-ZnEt2-glycerine catalyst and 1,10-phenanthroline (PHEN) cocatalyst. Coordination of PHEN with active Zinc center enhanced the nucleophilic ability of the metal carbonate, which became more regio-specific in attacking carbon in PO, leading to PPC with improved H-T linkages.
Resumo:
The labilities of thorium fractions including mobility and bioavailability vary significantly with soil properties. The effects of soil pH and soil organic matter on the distribution and transfer of thorium fractions defined by a sequential extraction procedure were investigated. Decrease of soil pH could enhance the phytoavailability and the potential availability of thorium in soil. Increase of organic matter reduced the phytoavailability of thorium, but enhanced the potential availability of it.
Resumo:
The extraction behavior of thorium(IV) sulfate by primary amine N1923 in imidazolium-based ionic liquid (IL) namely 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)mim]PF6) was systematically studied in this paper. Results showed that the extraction behavior was quite different from that using conventional solvent as diluent. A reversed micellar solubilization extraction mechanism was proposed for the extraction of thorium(IV) by N1923/[C(8)mim]PF6 via slope analysis method and polarized optical microscopy (POM)/transmission electron microscopy (TEM) observation. The salt-out agent, Na2SO4, was demonstrated to prompt this extraction mechanism.
Resumo:
Sphere NH4Y1.9Eu0.1F7 nanoparticles were successfully synthesized by a hydrothermal method at 180 degrees C for 10 h. SEM and TEM images show the particles are spheres and have lots of hollows in them. The mean particle size is about 60 nm. The shape and size of the particles can be controlled by changing temperature and time of reactants. The luminescent property of the sample indicates that strong emission peaks of the Eu3+ ions are located at about 589 and 612 mm.
Resumo:
Uniform rare earth phosphate (REPO4, RE = La-Tb) nanocrystals were successfully synthesized in a properly designed TBP/[Omim]Cl/H2O (tributylphosphate/1-octyl-3-methyl-imidazolium chloride/water) microemulsion system. The phosphoryl groups anchored the TBP molecules oil the surfaces of the nanocrystals, and this made the nanocrystals easily dispersed in some imidazolium-based ILs. LaPO4:Eu3+ and CePO4:Tb3+ nanocrystals capped with TBP showed bright red and green emission under UV excitation, with enhanced emission intensity and lifetimes compared with the uncapped ones.
Resumo:
The effect of combination between a trace of halogenated compounds (such as ferric chloride and ammonium bromide) and Ni2O3 particles on the carbonization of polypropylene (PP) was investigated during combustion. The results showed a synergistic catalysis of combined halogenated compounds with Ni2O3 in promoting the formation of the residual char during combustion. The investigation on the promotion mechanism showed that halide radical releasing from halogen-containing additives worked as a catalyst to accelerate dehydrogenation-aromatization of degradation products of PR which promote the degradation products to form the residual char catalyzed by nickel catalyst.
Resumo:
Vapor-phase dehydration of glycerol to produce acrolein was investigated at 320 A degrees C over rare earth (including La, Ce, Nd, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb, Lu) pyrophosphates, which were prepared by precipitation method. The most promising catalysts were characterized by means of XRD, FT-IR, TG-DTA, BET and NH3-TPD measurements. The excellent catalytic performance of rare earth pyrophosphate depends on the appropriate surface acidity which can be obtained by the control of pH value in the precipitation and the calcination temperature, e.g. Nd-4(P2O7)(3) precipitated at pH = 6 and calcined at 500 A degrees C in the catalyst preparation.
Resumo:
Lanthanide hexaaluminates including LaMgAl11O19, NdMgAl11O19, SmMgAl11O19 and GdMgAl11O19 were synthesized via Sol-Gel method. Due to the anisotropic crystal growth, these oxides crystallize in the form of platelets and the platelet thickness increases with the decrease of rare-earth ionic radius. It was observed that the thermal-shock resistances of LaMgAl11O19, NdMgAl11O19 and SmMgAl11O19 oxides were superior to 8YSZ as proved by water quenching tests. In addition, the thinner the platelet. the more interstices are retained in the sintered specimen, and the better thermal-shock resistance the oxide has. Based on SEM images, it can be seen that the SmMgAl11O19 sample exhibits a mixture of the intergranular and transgranular fracture after thermal cycling failure.
Resumo:
Relationship between charge transfer energies E-CT of Yb3+ and Sm3+ and environmental factors h(e) in various crystals was investigated using a dielectric chemical bond method. Both results show that they have an exponential relation E-CT = A+B exp(-kh(e)), but the exponential factors are different, which indicates that the interaction between the rare earth ions and environment is connected with the kind of rare earth ion. This result provides a method of determining charge transfer energies of Yb3+ and Sm3+ from a crystal structure.
Resumo:
Two 3d-4f heterometallic compounds of p-tert-butylsulfinylcalix[4] arene were synthesized by the solvothermal method and characterized by some hinged double-dumbbell-like subunits in which two perpendicular dumbbell entities were constructed by an in-between isosceles triangle Mn(II)Ln(2)(III), and two tail-to-tail calixarene molecules, and hinged by the lanthanide-sulfinyl group bonding. The magnetic properties of the title compounds were examined.
Resumo:
Five new compounds of sulfonylcalix[4]arenetetrasulfonate (SC4AS), [H7Na(H2O)(3)(SC4AS)(phen)(5)](H2O)(11.9) (1), [H6Mn(H2O)(4)(SC4AS)(phen)(5)] (H2O)(12.7) (2), [Cu-4(SC4AS) (phen)(6)] (H2O)(4.5) (3), {[Cu (2)(SC4AS) (bpy)(2)][Cu(bpy)(2)(H2O)](2)} (H2O)(6.6) (4), and {[Zn-2(SC4AS) (phen)(2)][Zn(phen)(2)(H2O)(2)](2)} (H2O)(7) (5) (where phen 1,10-phenanthroline and bpy = 2,2'-bipyridine), were synthesized by a hydrothermal method and structurally determined by single crystal X-ray diffraction. The SC4AS ligand adopts partial cone conformation in compounds 1 and 2 and 1,2-alternate form in compounds 3-5. According to the structural analysis and density functional theory (DFT) calculations, we suggest that the metal can affect the conformation of SC4AS.
Resumo:
Seven supramolecular compounds comprising p-sulfonatocalix[6]arene and transition metals, {[Cu(Imz)-(phen)(H2O)](4)[C6AS]}center dot 10H(2)O (1), {[Cu(Imz)(2)(phen)](2)[Cu(Imz)(phen)(H2O)(2)](2)[C6AS]}center dot 13.3H(2)O (2), {[M(phen)(2)(H2O)]-[(M(phen)(2)](2)[C6AS]}center dot nH(2)O (3 and 4) (3: M = Co and n = 29.6; 4: M = Zn and n = 29.9), {[Cu(phen)(2)](4)[C6AS]}(2)center dot 13H(2)O (5), [H3O](2)[Co(phen)(3)](2)[C6AS]center dot 10.7H(2)O(6), and [Cu(phen)(2)(H2O)](2){[Cu(phen)(2)](2)[C6AS]}center dot 8H(2)O(7)(phen = 1,10-phenanthroline, C6AS = p-sulfonatocalix[6]arene, Imz = imidazole), have been synthesized by a hydrothermal method and structurally characterized by IR spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), and single crystal X-ray diffraction.