554 resultados para Luminescence.
Resumo:
Energy transfer phenomena have been observed by activating the oxyapatite host-lattice Ca2Gd8(SiO4)6O2 with Eu3+, Tb3+, Dy3+, Sm3+. This is based on the energy migration in the Gd3+ sublattice and trapping by the activators. The trapping efficiency for G
Resumo:
In this paper we report on the luminescence and energy transfer in GdP4O14:Eu3+,Sm3+ (GdPP:Eu,Sm) in single crystals grown by the hydrothermal method. The room temperature excitation, emission, absorption and IR spectra of the crystals have been measured and analysed. The energy transfer from Gd3+ and Sm3+ to Eu3+ ions in GPP:Eu,Sm crystals is also discussed.
Resumo:
At room temperature, the Bi3+ ion shows broad band characters of its luminescence in Ca2B2O5, M3B2O6 ( M=Ca,Sr ) and SrB4O7. The maxima of the Bi3+ S-1(0)-->P-3(1) absorption bands are located in the range of 240-300nm, but the energy variation of the corresponding P-3(1)-->S-1(0) emissions is very large. The maxima of these emission bands change from 350nm in Ca3B2O6;Bi3+ to 586nm in SrB4O7:Bi3+. The Stokes shift of the Bi3+ luminescence increases from 6118 cm-1, in Ca2B2O5:Bi3+, to 24439 cm-1, in SrB4O7:Bi3+. The emission intensity of the Bi3+ luminescence increases with the decreasing Stokes shift. It has been found that in Ca2B2O5, the Bi3+ ion could transfer its excitation energy to the R3+ ions ( R=Eu, Dy, Sm, Tb ) , but in, Ca3B2O6 and Sr3B2O6, only Bi3+-->Eu3+ was observed. No energy transfer from Bi3+ to R3+ was detected in SrB4O7.
Resumo:
In this paper, the luminescence properties of Dy3+ and Eu3+ in M3Ln2 (BO3)4 (M = Ca,Sr,Ba; Ln = La, Gd, Y) were systematically studied. The hypersensitive transitions of Dy3+ and Eu3+ were investigated in relation to the host compositions; the relationship between the energy of Eu3+ charge-transfer band and M2+ ion was discussed, and the concentration quenching of Dy3+ luminescence was reported.
Resumo:
In this paper, the yellow-to-blue intensity ratio of Dy3+ (Y/B) and the red-to-orange intensity ratio of Eu3+ (R/O) were studied in relation to the compositions and structures of alkaline-earth borates. The dependence of the energy of the Eu3+ charge-transfer band (CTB) and of the emission intensity of Dy3+ on the alkaline-earth ions and the boron content of the hosts is discussed.
Resumo:
The compounds, K_5LnLi_2F_(10)(Ln=La, Gd, Y) were synthesized by solid-state reaction in argon atmosphere. Powder X-ray diffraction patterns showed that K_5LnLi_2F_(10) is isostructural with K_5NdLi_2F_(10)(KNLF) except K_5YLi_2F_(10). The cell parameters and volumes of K_5LnLi_2F_(10)(Ln=La, Ce, Gd) were calculated. They decrease regularly with radii of La~(3+), Ce~(3+) and Gd~(3+). The excitation and fluorescent spactra of K_5Ce_xLn_(1-x) Li_2F_(10) were determined. It was found that the excitat...
Resumo:
Homogeneous DNA hybridization assay based on the luminescence resonance energy transfer (LRET) from a new luminescence terbium chelate, N,N,N-1,N-1-[2,6-bis(3'-aminomethyl-1'-pyrazolyl)-4-phenylpyridine]tetrakis(acetic acid) (BPTA)-Tb3+ (lambda(ex) = 325 nm and lambda(em) = 545 nm) to an organic dye, Cy3 (A,. = 548 nm and A,. = 565 nm), has been developed. In the system, two DNA probes whose sequences are complementary to the two different consecutive sequences of a target DNA are used; one of the probes is labeled with the Tb3+ chelate at the T-end, and the other is with Cy3 at the 5'-end. Labeling of the Tb3+ chelate is accomplished via the linkage of a biotin-labeled DNA probe with the Tb3+ chelate-labeled streptavidin. Strong sensitized emission of Cy3 was observed upon excitation of the Tb3+ chelate at 325 run, when the two probe DNAs were hybridized with the target DNA. The sensitivity of the assay was very high compared with those of the previous homogeneous-format assays using the conventional organic dyes; the detection limit of the present assay is about 30 pM of the target DNA strand.
Resumo:
Two new polyacid derivative ligands of thienyl-substituted terpyridine analogues, N,N,N-1,N-1-[4'-(2"'-thienyl)-2,2':6',2"-terpyridine-6,6"-diyl]bis(methylenenitrilo) tetrakis(acetic acid) (TTTA) and N,N,N-1,N-1-[2,6-bis(3'-amino-methyl-1'-pyrazolyl)-4-(2"-thienyl)pyridine] tetrakis(acetic acid) (BTTA), were synthesized, and the luminescence properties of their Eu3+ and Tb3+ chelates were investigated. The Eu3+ chelates of the two ligands are strongly luminescent having luminescence quantum yields of 0.150 (TTTA-Eu3+) and 0.114 (BTTA-Eu3+), and lifetimes of 1.284 ms (TTTA-Eu3+) and 1.352 ms (BTTA-Eu3+), whereas their Tb3+ chelates are weakly luminescent. The TTTA-Eu3+ chelate was used for streptavidin (SA) labeling, and the labeled SA was used for time-resolved fluoroirnmunoassay of insulin in human sera. The method gives the detection limits of 33 pg ml(-1). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Near-infrared to ultraviolet upconversion luminescence was observed in the Pr3+ :Y2SiO5 crystal with 120 fs, 800 mn infrared laser irradiation. The observed emissions at around 270 nm and 305 nm could be assigned to 5d -> 4f transitions of Pr3+ ions. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to simultaneous three-photon absorption induced upconversion luminescence. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Bi-doped BaF2 crystal was grown by the temperature gradient technique and its spectral properties were investigated. The absorption, emission and excitation spectra were measured at room temperature. Two broadband emissions centered at 1070 and 1500 nm were observed in Bi-doped BaF2 crystal. This extraordinary luminescence should be ascribed to Bi-related centers at distinct sites. We suggest Bi2+ or Bi+ centers adjacent to F vacancy defects are the origins of the observed NIR emissions. (C) 2009 Optical Society of America
Resumo:
Ag nanoparticle embedded NaYF4:0.05Tb center dot chi Ce/ PVP (PVP stands for poly(vinyl pyrrolidone)) composite nanofibers have been prepared by electrospinning. A field emission scanning electron microscope and x-ray diffraction have been utilized to characterize the size, morphology and structure of the as-prepared electrospun nanofibers. Obvious photoluminescence (PL) of NaYF4:0.05Tb center dot 0.05Ce/PVP electrospun nanofibers due to the efficient energy transfer from Ce3+ to Tb3+ ions is observed. The PL intensity of the electrospun nanofibers decreases gradually with the addition of Ag nanoparticles. No obvious surface plasmon resonance enhanced luminescence is observed. The reasons for the weakening of the emission intensity with the addition of Ag nanoparticles have also been discussed in this work.
Resumo:
We investigated the effect of cerium oxide on the precipitation of Ag nanoparticles in silicate glass via a femtosecond laser irradiation and successive annealing. Absorption spectra show that Ce3+ ions may absorb part of the laser energy via multiphoton absorption and release free electrons, resulting in an increase of the concentration of Ag atoms and a decrease of the concentration of hole-trapped color centers, which influence precipitation of the Ag nanoparticles. In addition, we found that the formed Ag-0 may reduce Ce4+ ions to Ce3+ ions during the annealing process, which inhibits the growth of the Ag nanoparticles.