366 resultados para methyl tert-butyl ether
Resumo:
Three comb polymers(CP) with oligo-oxyethylene side chains of the type -O(CH2CH2O)(n)CH3 were prepared from methyl vinyl ether/maleic anhydride alternating copolymer. Homogeneous amorphous polymer electrolytes were made from CP and LiCF3SO3 or LiClO4 by solvent-casting method, and their conductivities were measured as a function of temperature and salt concentration. The conductivity which displayed non-Arrhenius behaviour was analyzed using the Vogel-Tammann-Fulcher equation. The conductivity maximum appears at lower salt concentration when CP has longer side chains. XPS was used to study the cation-polymer interaction.
Resumo:
A comb polymer with oligo-oxyethylene side chains of the type -(CH2CB2O)(12)CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer and poly (ethylene glycol) methyl ether. The polymer can dissolve LiClO4 salt to form homogeneous amorphous polymer electrolyte. The ac ion conduction was measured using the complex impedance method, and conductivities were investigated as functions of temperatures and salt concentration. The complexes were first found to have two classes of glass transition which increase with increasing salt content, The optimum conductivity attained at 25 degrees C is in the order of 5.50 x 10(-6)Scm(-1). IR spectroscopy was used to study the cation-polymer interaction.
Resumo:
Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used to study the miscibility of blends of a graft copolymer of poly(methyl methacrylate) on linear low density polyethylene (LLDPE-g-PMMA, G-3) with poly(vinylidene fluoride)(b) (PVF2) and the compatibilization of blends of LLDPE/PVF2. The specific interaction between PMMA side chains and PVF2 in G-3/PVF2 binary blends is weaker than that between the homopolymers PMMA and PVF2. There are two states of PVF2 in the melt of a G-3/PVF2 (60/40, w/w) blend, one as pure PVF2 and the other interacting with PMMA side chains. The miscibility between PMMA side chains and PVF2 affects the crystallization of PVF2. LLDPE-g-PMMA was demonstrated to be a good compatibilizer in LLDPE/PVF2 blends, improving the interfacial adhesion and dispersion in the latter. Diffusion of PMMA side chains into PVF2 in the interfacial region reduces the crystallization rate and lowers the melting point (T-m) and the crystallization temperature (T-c) of PVF2 in the blends.
Resumo:
The crystallization and melting behaviours of a multiblock copolymer comprising poly(ether ether ketone) (PEEK) and poly(ether sulfone) (PES) blocks whose number average molecular weights <((M)over bar (n)'s)> were 10 000 and 2900, respectively, were studied. The effect of thermal history on crystallization was investigated by wide-angle X-ray diffraction measurement. A differential scanning calorimeter was used to detect the thermal transitions and to monitor the energy evolved during the isothermal crystallization process from the melt. The results suggest that the crystallization of the copolymer becomes more difficult as compared with that of pure PEEK. The equilibrium melting point of the copolymer was found to be 357 degrees C, about 30 degrees C lower than that of pure PEEK. During the isothermal crystallization, relative crystallinity increased with crystallization time, following an Avrami equation with exponent n approximate to 2. The fold surface free energy for the copolymer crystallized from the melt was calculated to be 73 erg cm(-2), about 24 erg cm(-2) higher than that of pure PEEK. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The miscibility of blends of poly(styrene-co-acrylonitrile) (SAN) with poly(methyl methacrylate) (PMMA) or poly(ethyl methacrylate) (PEMA) has been investigated by means of NMR and DSC techniques. It is found that there are intermolecular interactions between the phenyl groups in SAN and carbonyl groups in PMMA or PEMA, and the strength of this intermolecular interaction strongly depends on the properties of ester side groups in PEMA or PMMA, composition of the blends and a certain composition of the copolymer. It is this specific interaction instead of the intramolecular repulsion force within the copolymer that plays a key role for the miscibility of SAN/PMMA and SAN/PEMA blends.
Resumo:
The miscibility of blends of poly(vinylidene chloride-co-acrylonitrile) (VDC-AN) and poly(methyl methacrylate) (PMMA) has been studied with DSC, FT-IR, and NMR methods. The results indicate that the VDC-AN/PMMA blends are miscibile on a molecular level, and the dipole-dipole interactions between C=O and C-Cl-2 and/or interpolymer hydrogen bondings between COOCH3 and CN and CCl groups play the role on the miscibility of the blends. It is found that the -CCl2- groups have two different chemical environments in the pure VDC-AN copolymer, which may result from the different configurations of the copolymer, such as -CCl2- groups in the ''alternating'' segments and -CCl2- groups in the ''blocky'' segments as proposed. It is the -CCl2- group in the ''alternating'' segment that takes part in the dipole-dipole interaction with C=O group in PMMA.
Resumo:
Amorphous samples of polyether ketone with cardo(PEK-C) have been studied in the solution state by C-13, H-1 high-resolution NMR, The H-1 and C-13 1D NMR spectra were assigned using two dimensional chemical shift correlated spectroscopy, 2D homonuclear correlated(COSY) and heteronuclear correlated (HETCOR) spectroscopy present important information. In this work, the structural units of PEK-C was determined by NMR. For some peaks, these assignments are confirmed by two dimensional long-range heteronuclear correlation experiments, A little modification is made on the original C-13 peak assignments for the main chain, The symmetry and the isotacticity of the chain structure for PEK-C are obvious on NMR data.
Resumo:
A series of vinylidene chloride (VDC) copolymers with methyl acrylate (MA) or butyl acrylate (BA) as comonomer (not more than 10%) was prepared by free-radical suspension copolymerization. The effects of comonomer structure, copolymer composition, and reaction condition (such as polymerization temperature on crystallinity) and thermal properties (such as melting temperature and decomposition temperature) were investigated. All VDC/acrylics copolymers studied here are semicrystalline and have more than one crystalline structure. The melting temperature of MA/VDC copolymers is decreased progressively with increase in MA content. The decomposition temperature of MA/VDC copolymers is slight increased gradually with increase in MA content. MA/VDC copolymers have lower melting temperature compared with BA/VDC copolymers with same VDC composition. The melting temperature of VDC copolymers increases with increase in polymerization temperature and decomposition temperature of those is almost independent of polymerization temperature. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Poly(aryl ether ketone ketone)s (PEKK) was a high-performance engineering plastics, By means of Wide Angle X-ray Diffraction (WAXD) and Differential Scanning Calorimetry (DSC) methods, PEKK samples crystallized in solvent induction, from glass state and from melting state were studied, Crystal forms I and II for PEKK were found, The formation of crystal form II was dependent on thermal history and solvent induction, and this form II had melting point 10 degrees C or so lower than that of form I crystallized from glass state, All PEKK samples had low melting peaks which were relevant to the polarization of PEKK molecular chain, while they had nothing to do with thermal history, The heat of fusion for PEKK low melting peaks accounted for,percentage of 2 to 10 or so of the whole heat of fusion, And PEKK has its equilibrium melting point of 409 degrees C.
Resumo:
A series of poly(aryl ether ketone)s containing meta-phenyl links are synthesized, DSC and wide-angle X-ray scattering, etc, are used to study the general properties of the polymers, With the increasing of meta linkage monomer percentage, the melting temperature decreases sharply at first, then rises steadily, the glass transition point. keeps a stable value, and crystallin;ty and crystallizing rate are reduced, A part of amorphous film of the polymer is annealed at different temperatures, DSC scan shows that besides T-m, a new melting peak (T-m') at low temperature appears, And with heat treating temperature rising, T-m' shifts to high temperature, and T-m keeps a stable value.
Resumo:
Poly(ether ether ketone) and poly(ether diphenyl ether ketone) homopolymers are prepared by nucleophilic substitution routes. Miscibility of PEEK/PEDEK blends has been studied by wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (d.s.c.). The results indicate that for PEEK/PEDEK blends, when the PEDEK content (weight fraction) is greater than 0.20 and less than 0.75, PEEK and PEDEK components form independent crystalline regions, i.e. they are immiscible; when the PEDEK content is in the range W-PEDEK less than or equal to 0.20 or greater than or equal to 0.75, a rich PEEK- or PEDEK-rich content crystallizes from a mixed melt and PEEK and PEDEK are miscible. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The microphase separation, glass transition and crystallization of two series of tetrahydrofuran-methyl methacrylate diblock copolymers (PTHF-b-PMMA), one with a given PTHF block of M(n) = 5100 and the other with a given PTHF block of (M) over bar(n) = 7000, were studied in this present work. In the case of solution-cast materials, the microphase separation of the copolymer takes place first, with crystallization then gradually starting in the formed PTHF microphase. The T-g of the PMMA microphase shows a strong dependence on the molecular weight of the PMMA block, while the T-g of the PTHF microphase shows a strong dependence on the copolymer composition. The non-isothermal crystallization temperature (T-c) of the diblock copolymer decreases rapidly and continuously with the increase in the amorphous PMMA weight fraction; the lowest T-c of the copolymer is ca. 35 K lower than the T-c of the PTHF homopolymer. There also exists a T-c dependence on the molecular weight of the PTHF block. In addition, when the major component of the copolymer is PMMA, a strong dependence of the crystallizability of the copolymer on the molecular weight of the PTHF block is observed; the higher the molecular weight, then the stronger its crystallizability. The melting temperature of the block copolymer is dependent on the copolymer composition and the molecular weight of its crystallizable block. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The crystal structure of poly(ether ketone ketone) (PEKK) is predicted by using Cerius2 software according to the wide angle X-ray diffraction (WAXD) experiment result. The predicted structure has a planar zigzag chain conformation between ether oxygen and ketone carbons in an orthorhombic lattice. Average zigzag angle is 126 degrees and average torsion angle is 30.32 degrees. The WAXD powder pattern calculated from the crystal packing model is in good agreement with the experiment result.
Resumo:
The melting behavior of semicrystalline poly(ether ether ketone ketone) (PEEKK) has been studied by differential scanning calorimetry (DSC). When PEEKK is annealed from the amorphous state, it usually shows two melting peaks. The upper melting peaks arise first, and the lower melting peaks are developed later. The upper melting peaks shown in the DSC thermogram are the combination (addition) of three parts: initial crystal formed before scanning; reorganization; and melting-recrystallization of lower melting peaks in the DSC scanning period. In the study of isothermal crystallization kinetics, the Avrami equation was used to analyze the primary process of the isothermal crystallization; the Avrami constant, n, is about 2 for PEEKK from the melt and 1.5 for PEEKK from the glass state. According to the Lauritzen-Hoffman equation, the kinetic parameter of PEEKK from the melt is 851.5 K; the crystallization kinetic parameter of PEEKK is higher than that of PEEK, and suggests the crystallizability of PEEKK is less than that of PEEK. The study of crystallization on PEEKK under nonisothermal conditions is also reported for cooling rates from 2.5 degrees C/min to 40 degrees C/min, and the nonisothermal condition was studied by Mandelkern analysis. The results show the nonisothermal crystallization is different from the isothermal crystallization. (C) 1996 John Wiley & Sons, Inc.