360 resultados para RADIATIONLESS DECAY MECHANISM
Resumo:
The transfer behavior of alkali motal ions K~+ and Na~+ across the interfaces of water/nitrobenzene and water/1, 2-dichloroethane facilitated by Triton X-100 is investigated by cyclic voltammetry with four electrodes. The equations of interfacial half-wave potential derived in terms of the mechanism proposed isverified by the experimental data and consistent with the practical △_0~wφ_p-pM curves.
Resumo:
The deepening of the studies on essentials of rare earth coordination catalyst brings about more and more reports on model compounds as active centre of the catalyst. Among them the most significant researches are those with identification of the crystal structures of compounds.
Resumo:
Quantitative studies on the evolution and dynamics of the deepwater area of Pearl River Mouth basin (PRMB) were carried out based on the latest geological and seismic data. The study area is generally in an extensional state during the Cenozoic. The major extension happened in the earlier syn-rift stages before 23 Ma and the extension after 23 Ma is negligible. Two rapid subsidence periods, 32-23 Ma and 5.3-2.6 Ma, are identified, which are related to the abrupt heat decay during margin breakup and the collision between the Philippine Sea plate and the Eurasian plate, respectively. The strongest crustal thinning in the Baiyun (sic) sag may trigger the syn-rift volcanism along the weak faulted belt around the sag. The Cenozoic tectonic evolution of the study area could be divided into five stages: rifting (similar to 50-40 Ma), rift-drift transition (similar to 40-32 Ma), early post-breakup (similar to 32-23 Ma), thermal subsidence (similar to 23-5.3 Ma) and neotectonic movement (similar to 5.3-0 Ma).
Resumo:
Based on high-resolution 3D seismic data, we document the polygonal faults within the Miocene Meishan (sic) Formation and Huangliu (sic) Formation of the Qiongdongnan (sic) basin, northern South China Sea. Within the seismic section and time coherent slice, densely distributed extensional faults with small throw and polygonal shape were identified in map view. The orientation of the polygonal faults is almost isotropic, indicating a non-tectonic origin. The deformation is clearly layer-bounded, with horizontal extension of 11.2% to 16%, and 13.2% on average. The distribution of polygonal faults shows a negative correlation with that of gas chimneys. The development of polygonal faults may be triggered by over-pressure pore fluid which is restricted in the fine-grained sediments of bathyal facies when the sediments is compacted by the burden above. The polygonal faults developed to balance the volumetric contraction and restricted extension. The product of hydrocarbon in the Meishan Formation may have contributed to the development of the polygonal faults. In the study area, it was thought that the petroleum system of the Neogene post-rift sequence is disadvantageous because of poor migration pathway. However, the discovery of polygonal faults in the Miocene strata, which may play an important role on the fluid migration, may change this view. A new model of the petroleum system for the study area is proposed.
Resumo:
On the basis of data of drifting bottles' tracks and the current measured in anchored stations, as well as temperature and salinity observed in cruise investigations and coastal stations, ADCP current data and AVHRR surface sea temperature (SST) data on the western coast of Guangdong, synthetic results of analysis showed that the coastal currents in the west of the mouth of the Zhujiang River were mainly westward in summer, which constituted the north branch of cyclonic gyre in the east of the Qiongzhou Straits. Part of its water flowed westward into the Beibu Gulf through the Qiongzhou Straits. The coastal current pattern was not identical with the traditional current system which flowed westward in the Qiongzhou Straits in winter and eastward in summer. The summertime's coastal current was always westward, maybe temporarily turning northeast only when the southwest wind was strong. The important characteristics of coastal current on the western coast of Guangdong, in the Qiongzhou Straits and in the north of the Beibu Gulf were analyzed and their mechanisms also were explained.
Resumo:
The one-dimensional Kraus-Turner mixed layer model improved by Liu is developed to consider the effect of salinity and the equations of temperature and salinity under the mixed layer. On this basis, the processes of growth and death of surface layer temperature inversion is numerically simulated under different environmental parameters. At the same time, the physical mechanism is preliminarily discussed combining the observations at the station of TOGA-COARE 0 degrees N, 156 degrees E. The results indicate that temperature inversion sensitively depends on the mixed layer depth, sea surface wind speed and solar shortwave radiation, etc., and appropriately meteorological and hydrological conditions often lead to the similarly periodical occurrence of this inversion phenomenon.
Resumo:
Analytical representations of the high frequency spectra of ocean wave and its variation due to the variation of ocean surface current are derived from the wave-number spectrum balance equation. The ocean surface imaging formulation of real aperture radar (RAR) is given using electromagnetic wave backscattering theory of ocean surface and the modulations of ocean surface winds, currents and their variations to RAR are described. A general representation of the phase modulation induced by the ocean surface motion is derived according to standard synthetic aperture radar (SAR) imaging theory. The detectability of ocean current and sea bottom topography by imaging radar is discussed. The results constitute the theoretical basis for detecting ocean wave fields, ocean surface winds, ocean surface current fields, sea bottom topography, internal wave and so on.
Resumo:
A hydrodynamic-thermodynamic equation set was set up to reflect the formational mechanism and evolution of the Northern Yellow (Huanghai) Sea cold water mass (NYSCWM) and its density circulation. Appropriate mathematical physical models were established by using some physical postulations. An approximate analytic solution to expound the distributions of temperature and three-dimensional current velocity, which can be used to expound the formational mechanism of the NYSCWM and its density circulation is obtained by using the theory of boundary layer and perturbational analyses.
Resumo:
The theoretical solution of the model of the Northern Yellow (Huanghai) Sea Cold Water Mass (NYSCWM) reveals that the NYSCWM is mainly formed through the continuous temperature increase of the overwintered water body above the Northern Yellow Sea Depression (NYSD) after spring when heat is continuously conducted from the sea surface to the deeper layer. In the NYSCWM's growing period, (June-July), nonlinear vertical convection and advection effects continuously increase, and are gradually balanced by the heat diffusion effect as the temperature increases from the surface to the bottom, which leads to the formation of an intensive thermocline and lateral front. Meanwhile, the three-dimensional circulation correspondingly occurs. In the NYSCWM's entire growing period, the horizontal circulation is always in the cyclonic motion, while the vertical circulation passes through a transition from a period with the cold centre as downwelling to a period with the cold centre as upwelling.
Resumo:
in order to investigate a new method of mitigating the deleterious effect of harmful algal blooms (HABs), the inhibition of the glycolipid biosurfactant sophorolipid on three common harmful algae Alexandrium tamarense, Heterosigma akashiwo and Cochlodinium polykrikoides was studied. The optimum preparation condition for sophorolipid, the inhibition capability of sophorolipid and the interaction mechanism of sophorolipid on the three algal species were investigated. Results showed that sophorolipid prepared by extraction with ethyl acetate exhibited the most prominent inhibition effect and that storage time of one year had little influence on the inhibition effect of sophorolipid. The optimum concentration of 10-20 mg/l sophorolipid inhibited the motility of about 90% of the tested harmful algal cells without recovery. Investigation of the algicidal process revealed that sophorolipid induced ecdysis of A. tamarense, quick lysis of H. akashiwo and swelling of C. polykrikoides in a relatively short time. Investigation of the nucleotides showed that more than 15% of the nucleotides were released from the cytoplasm under the effect of 10-20 mg/l sophorolipid, indicating the irreversible damage on the cellular membrane, which resulted in the disintegration of the harmful algal cells. (C) 2004 Elsevier B.V. All rights reserved.