463 resultados para Phosphorescence excitation spectra
Resumo:
MF2 (M = Ca, Sr, Ba) nanocrystals (NCs) were synthesized via a solvothermal process in the presence of oleic acid and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, UV/vis absorption spectra, photoluminescence (PL) excitation and emission spectra, and lifetimes, respectively. In the synthetic process, oleic acid as a surfactant played a crucial role in confining the growth and solubility of the MF2 NCs. The as-prepared CaF2, SrF2 and BaF2 NCs present morphologies of truncated octahedron, cube and sheet in a narrow distribution, respectively.
Resumo:
The hexagonal and monoclinic LaPO4:Eu3+ nanorods can be selectively synthesized through a simple hydrothermal method by only adjusting the reaction temperature. Hexagonal and monoclinic LaPO4:Eu3+ nanorods can be prepared at 120 and 180 degrees C, respectively. The phase conversion of LaPO4:Eu3+ under different temperatures is investigated in detail. Moreover, the influence of the temperature on the intensity and the shift of the peaks of the excitation and emission spectra is discussed, and the decay lifetime of the Eu3+ ions of the sample obtained at different temperature also have been investigated in this paper.
Resumo:
A series of dysprosium complex doped xerogels with the same first ligand (acac = acetylacetone) and different neutral ligands were synthesized in situ via a sol-gel process. The Fourier transform infrared (FTIR) spectra, diffuse reflectance (DR) spectra, and near-infrared (NIR) luminescent properties of dysprosium complexes and dysprosium complex doped xerogels are described in detail. The results reveal that the dysprosium complex is successfully synthesized in situ in the corresponding xerogel. Excitation at the maximum absorption wavelength of the ligands resulted in the characteristic NIR luminescence of the Dy3+ ion, which contributes to the energy transfer from the ligands to the central Dy3+ ion in both the dysprosium complexes and xerogels via an antenna effect.
Resumo:
Quantum-chemistry methods were explored to investigate the electronic structures, injection and transport properties, absorption and phosphorescence mechanism of a series of blue-emitting Ir(III) complexes {[(F-2-ppy)(2)Ir(pta -X/pyN4)], where F-2-ppy = (2,4-difluoro)phenylpyridine; pta = pyridine-1,2,4-triazole; X = phenyl(1); p-tolyl (2); 2,6-difluororophenyl (3); -CF3 (4), and pyN4 = pyridine-1,2,4-tetrazolate (5)}, which are used as emitters in organic light-emitting diodes (OLEDs). The mobility of hole and electron were studied computationally based on the Marcus theory. Calculations of Ionization potentials (IPs) and electron affinities (EAs) were used to evaluate the injection abilities of holes and electrons into these complexes.
Resumo:
We report a quantum-chemical study of electronic, optical and charge transporting properties of four platinum (II) complexes, pt((CN)-N-Lambda)(2) ((CN)-N-Lambda=phenylpyridine or thiophenepyridine). The lowest-lying absorptions at 442, 440, 447 and 429 nm are all attributed to the mixed transition characters of metal-to-ligand charge transfer (MLCT) and ligand-centered (LC) pi - pi(*) transition. While, unexpectedly, the lowest-lying phosphorescent emissions at 663, 660, 675 and 742 nm are mainly from metal-to-ligand charge transfer ((MLCT)-M-3) ligand-centered (LC) pi ->pi* transition. Ionization potential (IP), electron affinities (EA) and reorganization energy P (lambda(hole/electron)) were obtained to evaluate the charge transfer and balance properties between hole and electron.
Resumo:
Blue, yellow and white light emissive LaOCl:Tm3+, LaOCl:Dy3+ and LaOCl: Tm3+, Dy3+ nanocrystalline phosphors were synthesized through the Pechini-type sol-gel process. X-Ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence (PL) and cathodoluminescence (CL) spectra were used to characterize the samples. Under UV radiation (229 nm) and low-voltage electron beam (0.5-5 kV) excitation, the Tm3+-doped LaOCl phosphor shows a very strong blue emission corresponding to the characteristic transitions of Tm3+ (D-1(2), (1)G(4) -> F-3(4), H-3(6)) with the strongest emission at 458 nm. The cathodoluminescent color of LaOCl:Tm3+ is blue to the naked eye with CIE coordinates of x = 0.1492, y = 0.0684. This phosphor has better CIE coordinates and higher emission intensity than the commercial product Y2SiO5:Ce3+.
Resumo:
One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes have been prepared by a combination method of sol-gel process and electrospinning. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low voltage cathodoluminescence (CL) and time-resolved emission spectra, as well as kinetic decays were used to characterize the resulting samples. The results of XRD, FT-IR, TG-DTA indicate that the CaWO4 and CaWO4: Tb3+ samples begin to crystallize at 500 degrees C with the scheelite structure. Under ultraviolet excitation and low-voltage electron beams excitation, the CaWO4 samples exhibit a blue emission band with a maximum at 416 nm originating from the WO42- groups, while the CaWO4:Tb3+ samples show the characteristic emission of Tb3+ corresponding to (D4-F6,5,4,3)-D-5-F-7 transitions due to an efficient energy transfer from WO42- to Tb3+.
Resumo:
One-dimensional X-1-Y2SiO5:Ce3+ and -Tb3+ nanofibers and quasi-one-dimensional X-1-Y2SiO5:Ce3+ and -Tb3+ microbelts have been prepared by a simple and cost-effective electrospinning process. X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy, photoluminescence (PL), and cathodoluminescence spectra were used to characterize the samples. SEM results indicate that the as-prepared fibers and belts are smooth and uniform with a length of several tens to hundreds of micrometers, whose diameters decrease after being annealed at 1000 degrees C for 3 h. Under ultraviolet excitation and low-voltage electron beam excitation, the doped rare earth ions show their characteristic emission, that is, Ce3+ 5d-4f and Tb3+ D-5(4)-F-7(J) (J = 6, 5 4, 3) transitions, respectively.
Resumo:
In this paper, we report a facile route which is based Oil tuning doping concentration of Mn2+ ions in ZnS nanocrystals, to achieve deliberate color modulation from blue to orange-yellow under single-wavelength excitation. X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as photoluminescence (PL) spectra were employed to characterize the obtained samples. In this process, the relative emission intensities of both ZnS host (blue) and Mn2+ dopant (orange-yellow) are sensitive to the Mn2+ doping concentration, due to the energy transfer from ZnS host to Mn2+ dopant. As a result of fine-tuning of these two emission components, white emission can be realized for Mn2+-doped ZnS nanocrystals. Furthermore.
Resumo:
Hydroxyapatite (Ca-5(PO4)(3)OH) nano- and microcrystals with multiform morphologies (separated nanowires, nanorods, microspheres, microflowers, and microsheets) have been successfully synthesized by a facile hydrothermal process. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) spectra, kinetic decay, and electron paramagnetic resonance (EPR) were used to characterize the samples. The experimental results indicate that the obtained Ca-5(PO4)(3)OH samples show an intense and bright blue emission under long-wavelength UV light excitation. This blue emission might result from the CO2 center dot- radical impurities in the crystal lattice.
Resumo:
LaAlO3:Tm3+ and LaAlO3:Tb3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. The XRD results reveal that the fully crystalline pure LaAlO3 Phase can be obtained at 800 degrees C. The FE-SEM image indicates that the phosphor samples are composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light (230 nm) and low-voltage electron beams (1-3 kV), the LaAlO3:Tm3+ and LaAlO3:Tb3+ phosphors show the characteristic emissions of Tb3+ (D-1(2)-> H-3(6,4),F-3(4) transitions) and Tm3+ (D-5(3,4)-> F-7(6,5,4,3) transitions) respectively. The CL of the LaAlO3:Tm3+ phosphors have high color purity and comparable intensity to the Y2SiO5:Ce3+ commercial product, and the CL colors of Tb3+-doped LaAlO3 phosphors can be tuned from blue to green by changing the doping concentration of Tb3+ to some extent.
Resumo:
CeF3 and CeF3:Tb3+ nanoparticles were prepared by reverse microemulsion with a functional monomer, methyl methacrylate (MMA), as the oil phase, and CeF3:Tb3+/poly (methyl methacrylate) (PMMA) nanocomposites were obtained via polymerization of the MMA monomer. The nanoparticles and nanocomposites have been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), low- and high-resolution transmission electron microscope (TEM), selected-area electron diffraction (SAED), thermogravimetric analysis (TGA), UV/vis transmission spectra, photoluminescence excitation, and emission spectra and luminescence decays. The well-crystallized CeF3 and CeF3:Tb3+ nanoparticles are spherical with a mean diameter of 15 nm. They show the characteristic emission of Ce3+ 5d-4f (313 nm, D-2-F-2(5/2); 323 nm, D-2-F-2(7/2)) and Tb3+ D-5(4)-F-7(J) (J = 6-3, with D-5(4)-F-7(5) green emission at 541 nm as the strongest one) transitions, respectively.
Resumo:
beta-NaYF4 hexagonal microprisms and microrods with different aspect ratios have been prepared via a simple hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. The influences of reaction temperature and the molar ratio of NaF to y(3+) on the crystal phases and shapes of final products have been studied in detail. The aspect ratios of products increase gradually with the increase of reaction temperature and NaF/Y3+ molar ratio. The growth mechanisms of crystals prepared under the different conditions are presented systematically. More importantly, the systematical investigation on the luminescence properties of beta-NaYF4:xEu(3+) (x = 0.5, 1, 2, 3, 5, and 10 mol %) with hexagonally microprismatic morphology shows the characteristic emissions of Eu3+ (D-5(J)-F-7(J'), J, J' = 0, 1, 2, 3). Under the excitation of single wavelength light of 397 nm, the luminescence colors of the corresponding products can be tuned feasibly from bluish white to yellow to red by changing the doping concentration of Eu3+.
Resumo:
Many efforts have been devoted to exploring novel luminescent materials that not contain expensive or toxic elements, or do not need a mercury vapor plasma source. In this paper, BPO4 and Li+-doped BPO4 powder samples were prepared by the Pechini-type sol-gel (PSG) process. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and X-ray photoelectron spectra (XPS), respectively. It was found that PSG -derived Li+-doped BPO4 annealed at 960 degrees C exhibited bright bluish-white emission centered at 416 nm. The luminescence decay curves analysis indicates that each sample has two kinds of lifetimes (5.9 ns and 0.529 ms) and two types of kinetic decay behaviors which can be fitted into a single-exponential function and a double-exponential function, respectively.
Resumo:
LaInO3:Eu3+ phosphors were prepared by a Pechini sol-gel process. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the synthesized phosphors. XRD results reveal that the sample begins to crystallize at 600 degrees C and pure LaInO3 phase can be obtained at 800 degrees C. The crystallinity increases upon raising the annealing temperature. The FE-SEM images indicate that LaInO3:Eu3+ phosphors are composed of fine and spherical grains around 40-80 nm in size. Under the excitation of UV light and low-voltage electron-beams, LaInO3:Eu3+ phosphors show the characteristic emissions of the Eu3+ (D-5(J)-F-7(J) J,J(')=0,1,2,3 transitions). The luminescence colors can be tuned from yellowish warm white to red by changing the doping concentration of Eu3+ to some extent. The corresponding luminescence mechanisms have been proposed.