441 resultados para Modified clays
Resumo:
Thionine-containing chemically modified electrode (cme) was constructed with glassy carbon substrate by potential sweep oxidation, electrodeposition and adsorption procedures, and electrocatalytic reduction of hemoglobin was carried out and characterized at the cme under batch and flow conditions. Comparison of the catalytic response toward hemoglobir obtained at the cme was made mainly in terms of the potential dependence, the detectability and long-term stability. When used in flow injection analysis (FIA) experiments with the detector monitored at a constant potential applied at -0.35 V vs sce, detection limit of 0.15-1.5 pmol level of hemoglobin injected was achieved at the cme, with linear response range over 2 orders of magnitude. All the cme s retained more than 70% of their initial hemoglobin response level over 8 h of continuous service in the flow-through system.
Resumo:
A novel Prussian blue chemically modified electrode (CME) was constructed and characterized for liquid chromatography electrochemical detection (LCEC) of catecholamines. Both anodic and cathodic peaks could be obtained by monitoring at constant applied potential at anodic and slightly cathodic potential ranges (0.3-0.7 and -0.2-0.1 V vs. SCE), respectively. When arranged in a series configuration, using the modified electrodes as generating and collecting detectors, extremely high effective collection efficiencies of 0.91 (for norepinephrine) and 0.58 (for dihydroxyphenylacetic acid) were achieved in dual-electrode LCEC for catecholamines; and a linear response range over 3 orders of magnitude and a detection limit of 10 pg were obtained with a downstream CME as the indicating detector.
Resumo:
A Prussian Blue-modified glassy carbon electrode prepared by simple adsorption exhibited excellent electrocatalytic activity in the oxidation of hydrazine in acidic media. A film of the perfluorosulphonic acid polymer Nafion coated on top of the Prussian Blue-modified glassy carbon electrode can improve the mechanical stability of the Prussian Blue layer in the flow stream. Hydrazine was detected by flow-injection analysis at the modified electrode with high sensitivity. The limit of detection was 0.6 ng.
Resumo:
Chemically modified electrodes prepared by treating the cobalt tetraphenylporphyrin modified glassy-carbon electrode at 750-degrees (HCME) are shown to catalyze the electrooxidation of hydrazine. The oxidation occurred at +0.63 V vs. Ag/AgCl (saturated potassium chloride) in pH 2.5 media. The catalytic response is evaluated with respect to solution pH, potential scan-rate, concentration dependence and flow-rate. The catalytic stability of the HCME is compared with that of the cobalt tetraphenylporphyrin adsorbed glassy-carbon electrode. The stability of the HCME was excellent in acidic solution and even in solutions containing organic solvent (50% CH3OH). When used as the sensing electrode in amperometric detection in flow-injection analysis, the HCME permitted sensitive detection of hydrazine at 0.5 V. The limit of detection was 0.1 ng. The linear range was from 50 ng to 2.4-mu-g. The method is very sensitive and selective.
Resumo:
A conducting polyaniline (PAn) film modified glassy carbon (GC) electrode was prepared by electrochemical polymerization. The electrochemical behavior of ascorbic acid (AH(2)) in aqueous solution at this PAn modified electrode was studied in detail. The experimental results show that PAn film modified electrode has good electrocatalytic activity on the oxidation of ascorbic acid in aqueous solution over a wide range of pH value, among which pH 4 is the optimum condition. The oxidation process of ascorbic acid at PAn film electrode can be regarded as an EC catalytic mechanism. The kinetic process of the catalytic reaction was investigated by rotating disk electrode (RDE) coated with PAn films. The rate constant of the catalytic reaction was evaluated. The catalytic peak currents are proportional to the concentrations tions of ascorbic acid in the range of 5 x 10(-2)-1 x 10(-6) mol . L-1. The PAn film elec trodes give very stable responce for the oxidation of ascorbic acid. The present investigation shows the posibility of using PAn film modified electrode for the determination of ascorbic acid.
Resumo:
In this paper the preparation of isopoly- and heteropolyoxometallates (IPA and HPA) thin film modified carbon fiber (CF) microelectrodes and the factor that influences the modification of IPA and HPA films are described. IPA and HPA film modified CF microelectrodes can all be prepared by cyclic potential scan and simple dip coating. The modified electrodes prepared are very stable and reversible in acidic solution with monolayer characteristics. The electrochemical pretreatment of CF microelectrodes plays an important role in the modification of IPA and HPA film. The absorption of IPA and HPA film on electrode surfaces has been discussed on the basis of surface conditions of the CF microelectrode and the structure of IPA and HPA.
Resumo:
A novel Eastman-AQ/Ni(II) chemically modified electrode (CME) produced by "double coating step" deposition of a poly(ester sulphonic acid) polymer film and Ni2+-containing crystalline species onto glassy carbon instead of a metallic nickel electrode exhibited stable electrocatalytic oxidation of numerous alpha-hydrogen compounds including carbohydrates, amines and amino acids. In cyclic voltammetry, the electrocatalysis appeared with an irreversible anodic wave at +0.55 V (vs. Ag/AgCl). The CME was adapted for constant-potential amperometric detection of these compounds in flow injection analysis. Using the CME, the linear response concentration range was between 1.0 x 10(-5) and 5.0 x 10(-2) mol/l and the detection limit was 5.0 x 10(-6) mol/l for glucose. The stability of the CME was adequate for routine quantitative application.
Resumo:
The ultra-thin modified PEO (polyethylene oxide)-LiClO4 polymer electrolyte film (50-mu-m) was obtained by solution-casting technique. Impedance spectra were taken on the cells consisting of above PEO film electrolyte and ion-blocking or nonblocking electrodes. The ambient conductivity as high as 1.33 X 10(-4)S cm-1 could be achieved for PEO electrolyte modified by the crosslinking. It was shown that the resistance at the interface between solid polymer electrolyte and lithium electrode is growing with increasing the storage time. At high temperature, as 96-degrees-C, the ionic transport is clearly controlled by diffusion.
Resumo:
Chemically modified electrodes prepared by adsorbing prussian blue on a glassy carbon electrode are shown to catalyse the electro-oxidation of cysteine, N-acetylcysteine and glutathione in acidic media. The catalytic response is evaluated with respect to the potential scan rate, the solution pH, the concentration dependence, and other variables. Covering the electrode with Nafion(R) film improved the stability and reproducibility in liquid chromatography with electrochemical detection to the extent that repetitive sample injections produced relative standard deviations of less than 5% over several hours of operation. The limit of detection was 4 pmol for cysteine, 33 pmol for glutathione and 61 pmol for N-acetylcysteine.
Resumo:
An electrochemical detector based on a polyaniline conducting polymer chemically modified electrode (PAn CME) was developed for use in flow-injection analysis and ion chromatography. Iodide, bromide, thiocyanate and thiosulphate are detected by using ion chromatography with a PAn CME electrochemical detector. The detection limits are 1, 5, 10 and 10 mgl-1, respectively. The CME response for electroinactive anions varies selectively with the mobile phase composition in flow-injection analysis. By this approach, perchlorate, sulphate, nitrate, iodide, acetate and oxalate can be detected conveniently and reproducibly over a linear concentration range of at least 3 orders of magnitude. The electrode is stable for over 2 weeks with no evidence of chemical or mechanical deterioration.
Resumo:
The preparation and the behaviour of a Prussian Blue (PB) film on a platinum microdisk electrode has been described. Electrocatalytic oxidation of ascorbic acid has occurred at the PB film modified microelectrode. This shows a typical example of a modified microelectrode in electrocatalysis following our previous theoretical studies (J. Electroanal. Chem., 309 (1991) 103) and the related catalytic reaction rate constant was determined.
Resumo:
In this paper, five types of chemically modified electrode (CMEs) prepared with the deposition of platinum particles on various surfaces of glassy carbon (GC) modified with cobalt porphyrin and Nafion(R) solution are characterized using the electron scanning microscope (SEM). Their activities in the four-electron reduction of dioxygen to water on the basis of their electrochemical data from cyclic voltammetric and rotating ring-disk electrode (RRDE) experiments are examined and compared. Platinum particles dispersed on the GC surface adsorbed with the cobalt porphyrin exhibit the highest activity for the electrocatalytic reduction of dioxygen. However it is interesting that the cobalt ion is lost from the center of the porphyrin ring during the preparation of the cobalt porphyrin + Nafion mixture solution, while the porphyrin ring still remains in the Nafion film, as shown by EDX analysis. The incorporation of the porphyrin may change the structure of the Nafion film into a looser form, since the platinum particles dispersed in the film are more readily exposed, resulting in more favourable mass transfer and higher activity for the electrocatalytic reduction of dioxygen.