350 resultados para Infrared emission spectra


Relevância:

30.00% 30.00%

Publicador:

Resumo:

SrIn2O4:Dy3+/Pr3+/Tb3+ white/red/green phosphors were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the samples. XRD reveal that the samples begin to crystallize at 800 degrees C and pure SrIn2O4 phase can be obtained at 900 degrees C. FE-SEM images indicate that the SrIn2O4:Dy3+, SrIn2O4:Pr3+, and SrIn2O4:Tb3+ samples consist of fine and spherical grains with size around 200-400 nm. Under the excitation of ultraviolet light and low-voltage electron beams (1 - 5 kV), the SrIn2O4:Dy3+, SrIn2O4: Pr3+, and SrIn2O4: Tb3+ phosphors show the characteristic emissions of Dy3+ (F-4(9/2) - H-6(15/2) at 492 nm and 4F(9/2) - 6H(13/2) at 581 nm, near white), Pr3+ (P-3(0) - H-3(4) at 493 nm, D-1(2) - H-3(4) at 606 nm, and P-3(0) - H-3(6) at 617 nm, red) and Tb3+ (D-5(4) - F-7(6,5,4,3) transitions dominated by D-5(4) - F-7(5) at 544 nm, green), respectively. All of the luminescence resulted from an efficient energy transfer from the SrIn2O4 host lattice to the doped Dy3+, Pr3+, and Tb3+ ions, and the luminescence mechanisms have been proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-submicrostructured CaWO4, CaWO4 : Pb2+ and CaWO4 : Tb3+ particles were prepared by polyol method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR), thermogravimetry-differential thermal analysis (TG-DTA), photoluminescence (PL), cathodo-luminescence (CL) spectra and PL lifetimes. The results of XRD indicate that the as-prepared samples are well crystallized with the scheelite structure of CaWO4. The FE-SEM images illustrate that CaWO4 and CaWO4 : Pb2+ and CaWO4 : Tb3+ powders are composed of spherical particles with sizes around 260, 290, and 190 nm respectively, which are the aggregates of smaller nanoparticles around 10-20 nm. Under the UV light or electron beam excitation, the CaWO4 powders exhibits a blue emission band with a maximum at about 440 nm. When the CaWO4 particles are doped with Pb2+, the intensity of luminescence is enhanced to some extent and the luminescence band maximum is red shifted to 460 nm. Tb3+-doped CaWO4 particles show the characteristic emission of Tb3+ D-5(4)-F-7(J) (J=6-3) transitions due to an energy transfer from WO42- groups to Tb3+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caln(2)O(4):Dy3+/Pr3+/Tb3+ blue-white/green/green phosphors were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence (PL) and cathodoluminescencc (CL) spectra as well as lifetimes were utilized to characterize the samples. The XRD results reveal that the samples begin to crystallize at 800 degrees C 3-1 and pure CaIn2O4 phase can be obtained after annealing at 900 degrees C. The FE-SEM images indicate that the CaIn2O4:Dy3+, CaIn2O4:Pr3+ and CaIn2O4:Tb3+ samples consist of spherical grains with size around 200-400nm. Under the excitation of ultraviolet light and low electron beams (1-5kV), the CaIn2O4:Dy3+, CaIn2O4:Pr3+ and CaIn2O4:Tb3+ phosphors show the characteristic emissions of Dy3+ ((F9/2-H15/2)-F-4-H-6 and (F9/2-H13/2)-F-4-H-6 transitions, blue-white), Pr3+ ((P0-H4)-P-3-H-3, (D2-H4)-D-1-H-3 and (P1-H5)-P-3-H-3 transitions, green) and Tb3+ ((D4-F6,5,4,3)-D-5-F-7 transitions, green), respectively. All the luminescence is resulted from an efficient energy transfer from the CaIn2O4 host lattice to the doped Dy3+ ,Pr3+ and Tb3+ ions, and the corresponding luminescence mechanisms have been proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SrLa1-xRExGa3O7 (RE = EU3+, Tb3+) phosphor films were deposited on quartz glass substrates by a simple Pechim sol-gel method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy, field-emission scanning electron microscopy, photoluminescence spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 700 degrees C and crystallized fully at 900 degrees C. The results of FNR spectra were in agreement with those of XRD. Uniform and crack-free films annealed at 900 degrees C were obtained with average grain size of 80 nm, root mean square roughness of 46 nm and thickness of 130 nm The RE ions showed their characteristic emission in crystalline SrLa1-xRExGa3O7 films, i.e., Eu3+ D-0-F-7(J) (J = 0, 1, 2, 3, 4), Tb3+5D4 -(7) F-J (J = 6, 5, 4, 3) emissions, respectively. The optimum concentrations (x) of Eu3+ and Tb3+ were determined to be 50, and 80 mol% in SrLa(1-x)RE(x)GGa(3)O(7) films, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoluminescence (PL) and electroluminescence (EL) properties of a samarium complex Sm(TTA)(3)phen (TTA = 2-thenoyltri-fluoroacetonate, phen = 1, 10-phenanthroline) were investigated. The results show that Sm(TTA)3phen could be used as promising luminescent and electron transporting material in the electroluminescent devices. The difference between PL and EL spectra was noticed and discussed. Besides, it is noteworthy that the choice of the hole transporting layer (HTL) showed significant effect on the device performance, which was explained by the low-lying highest occupied molecular orbit (HOMO) level of Sm(TTA)3phen and the different hole injection barrier at the HTL/EML (emitting material layer) interface.