508 resultados para HETEROGENEOUS CATALYSTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic performance of Fe/Si-2 and Fe-Mn/Si-2 catalysts for conversion of C2H6 with CO2 to C2H4 was examined in a continuous-flow and fixed-bed reactor. The results show that the Fe-Mn/Si-2 catalyst exhibits much better reaction activity and selectivity to C2H4 than those of the Fe/Si-2 catalyst. Furthermore, the coking-decoking behaviors of these catalysts were studied through TG. The catalytic performances of the catalysts after regeneration for conversion of C2H6 or dilute C2H6 in FCC off-gas with CO2 to C2H4 were also examined. The results show that both activity and selectivity of the Fe-Mn/Si-2 catalyst after regeneration reached the same level as those of the fresh catalyst, whereas it is difficult for the Fe/Si-2 catalyst to refresh its reaction behavior after regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ammonia synthesis over ruthenium catalysts supported on different carbon materials using Ba or K compounds as promoters has been investigated. Ba(NO3)(2), KOH, and KNO3 are used as the promoter or promoter precursor, and activated carbon (AC), activated carbon fiber (ACF). and carbon molecular sieve (CMS) are used as the support. The activity measurement for ammonia synthesis was carried out in a flow micro-reactor under mild conditions: 350-450 degreesC and 3.0 MPa. Results show that KOH promoter was more effective than KNO3. and that Ba(NO3)(2) was the most effective promoter among the three. The roles of promoters can be divided into the electronic modification of ruthenium, the neutralization of surface functional groups on the carbon support and the ruthenium precursor. The catalyst with AC as the support gave the highest ammonia concentration in the effluent among the supports used, while the catalyst with ACF as the support showed the highest turnover-frequency (TOF) value. It seems that the larger particles of Ru on the carbon supports are more active for ammonia synthesis in terms of TOF value. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanocene complexes combined with nanometer-size sodium hydride are extremely active and selective catalysts for the hydrogenation of terminal alkenes under normal pressure. The initial turnover frequencies (TOFinitial) may reach 100-300 s(-1) in the hydrogenation of 1-hexene. The highest catalytic efficiency turnover (TO) reaches 1.5 x 10(5) in 2 h for the hydrogenation of styrene. These catalytic systems exhibit specific selectivity toward alkene substrates. Only terminal alkenes can be hydrogenated. No isomerization of carbon-carbon double bonds occurs during hydrogenation. A suitable substituent on the cyclopentadienyl ring of titanocene and the use of nanometric sodium hydride are key factors in the high efficiency of these catalytic systems. (C) 2002 Elsevier Science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly-salen-Co(III) complexes were employed in the hydrolytic kinetic resolution (HKR) of terminal epoxides and ee's up to 98% were obtained. In the HKR of epichlorohydrin, the polymeric catalysts can be recovered and modified for recycling. The recovered polymer catalyst shows good activity and selectivity. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, amorphous silica-alumina nanomaterials with narrow mesoporous distribution can be obtained by two novel sol-gel processes, without the use of any templates. The results of our experiments show that the preparation method has a great influence on the precursor sol structure as well as the specific surface area and mesopore volume of the final product, but has no effect on the pore size distribution.