414 resultados para ELECTRODE POSITION
Resumo:
A rapid rotation-scan method was used for the electrocatalytic oxidation of H2O2 at a cobalt protoporphyrin modified pyrolytic graphite electrode (CoPP/PG). The rate constant of H2O2 oxidation at the CoPP/PG electrode at different potentials and in different pH solutions was measured. The variation of catalytic activity with reaction charges (Q) passed through the electrode was analyzed. This provided a convenient electrochemical method to study the passivation and poisoning of catalytic sites with time.
Resumo:
The electrochemical behaviour of hexacyanoferrate(II) has been studied by using a bis(4-pyridyl)disulfide modified gold electrode. On the protonated electrode surface, hexacyanoferrate(II) can transfer an electron reversibly but no apparent adsorption was detected. On the deprotonated electrode surface, electron transfer by hexacyanoferrate(II) was more difficult. The electrochemical reversibility varied with the pH of the solution. Relationships between the currents or the standard heterogeneous rate constants and pH were derived.
Resumo:
The electrochemically polymerized azure A film electrode was firstly reported in this paper. A quasi-reversible electrode processes of myoglobin with the formal heterogeneous electron transfer rate constant (k(sh)) of 1.73 x 10(-4) cm.s-1 at the polymerized azure A modified electrode have been achieved using in-situ UV-visible spectroelectrochemistry. The adsorption of myoglobin on the polymerized azure A film electrode surface was confirmed by XPS. With simultaneously studying of cyclic voltammetry and in-situ cyclic voltabsorptometry, the attribution of the voltammetry responses of myoglobin at the film electrode has been studied. The mechanism for the heterogeneous electron transfer of myoglobin at the polymerized azure A film modified electrode has been proposed as well.
Resumo:
A new liquid chromatography electrochemical (LCEC) scheme for glucose sensing has been developed on the basis of a Prussian Blue chemically modified electrode (CME) of novel construction and characterized in terms of various experimental parameters by the flow injection analysis (FIA) technique. Unique hydrodynamic voltammograms were obtained for the first time at the CME in the flow-through amperometric detection of glucose, and subsequently both anodic and cathodic peaks could be expected on monitoring the operating potential in the modest positive or negative region. The unique pH dependence on the CME response towards glucose makes it perfectly compatible with conventional reversed phase liquid chromatography systems. On the basis of these features, practical application in glucose LCEC detection has been effectively performed; a linear response range over three orders of magnitude and a detection limit of subpicomole level were readily obtained. The capability of the established LCEC mode in the direct sensing of urinary glucose has been demonstrated.
Resumo:
In this paper a carbon fibre (CF) microelectrode modified with the 2:18-molybdodiphosphate anion by simple adsorption is described and its electrochemical behaviour is reported. The 2:18-molybdodiphosphate anion (alpha-P2Mo18O626-), which is a Dawson structure, undergoes five successive multielectron reductions in acidic solution. The first three redox waves correspond to the two-electron process, and the last two waves are four-electron and six-electron processes respectively. On the basis of the experimental results it is shown that the electrode process of alpha-P2Mo18O626- on the CF electrode in acidic solution is simultaneously controlled by the diffusion and adsorption of alpha-P2Mo18O626- anions. When the concentration of the alpha-P2Mo18O626- in the solution is reduced, the electrode process mainly exhibits non-diffusion-controlled behaviour, and the diffusion-limited process takes over as the concentration of alpha-P2Mo18O626- becomes higher. The CF electrode modified with a thin film of alpha-P2Mo18O626- exhibits very good stability and redox behaviour in aqueous acidic solution. The alpha-P2Mo18O626- is reduced to heteropoly blue, with an accompanying protonation process. The addition of more than six electrons to the alpha-P2Mo18O626- anion in an aqueous solution does not result in its decomposition. The result obtained is not the same as that reported previously.
Resumo:
Electrochemical polymerization of 4-vinylpyridine produced a uniform poly(4-vinyl)pyridine(PVP) film on the glassy carbon (GC) electrode surface. The isopolymolybdic acid-PVP film-modified electrode was prepared by soaking the PVP/GC electrode in the 0.05 M H2SO4 aqueous solution containing 0.005 M isopolymolybdic acid (H4Mo8O26). The latter (catalyst) is incorporated and held in the PVP film electrostatically. The electrochemical behavior and electrocatalytic properties of this H4Mo8O26-PVP/GC electrode was described. The results indicate that this modified electrode has good stability and electrocatalytic activity on the reduction of chlorate and bromate ions in aqueous solution. The catalytic process is regarded as an EC mechanism.
Resumo:
A vitamin B-12 chemically modified electrode (CME) was constructed by adsorption of vitamin B-12 onto a glassy carbon surface. The electrode catalyzes the electrooxidation of hydrazine compounds over a wide pH range. The electrocatalytic behavior of hydrazines is elucidated with respect to the CME preparation conditions, solution pH, operating potential, mobile phase flow rate, and other variables. When applied to liquid chromatographic detection of the analytes, the vitamin B-12 CME yielded a linear response range over 2 orders of magnitude, and detection limits at the picomole level. The vitamin B-12 CME offers acceptable catalytic stability in both batch and flow systems.
Resumo:
A copper-based chemically modified electrode (CME) has been constructed and characterized for flow-through amperometric detection of catechol, resorcinol, and hydroquinone. Novel potential dependence of the detector response was first obtained for these analytes at the Cu CME, where negative peaks together with positive ones were observed in one definite chromatogram using amperometric detection. Its advantages in chromatographic applications were demonstrated. From these observations it is proposed that the detector response was governed by formation of copper complexes with the solutes. A dynamic linear range over two orders of magnitude was obtained, when operating the detector at +0.10 V vs. SCE, from which ng detection limits were achieved.
Resumo:
The photoreduction current response on a polyaniline modified electrode is interpreted as photo-assisted reduction of oxygen dissolved in the electrolyte solution but not due to the excited species PAn* and PAn* dagger. The effect of light is just the same as that of the electrode rotating or of stirring of the electrolyte which accelerates the oxygen dissolved in the electrolyte solution to react with leucoemeraldine (reduced polyaniline). The potentiostat is set to reduce the oxidized polyaniline at constant potential, thus producing a reduction current.
Resumo:
Thionine-containing chemically modified electrode (cme) was constructed with glassy carbon substrate by potential sweep oxidation, electrodeposition and adsorption procedures, and electrocatalytic reduction of hemoglobin was carried out and characterized at the cme under batch and flow conditions. Comparison of the catalytic response toward hemoglobir obtained at the cme was made mainly in terms of the potential dependence, the detectability and long-term stability. When used in flow injection analysis (FIA) experiments with the detector monitored at a constant potential applied at -0.35 V vs sce, detection limit of 0.15-1.5 pmol level of hemoglobin injected was achieved at the cme, with linear response range over 2 orders of magnitude. All the cme s retained more than 70% of their initial hemoglobin response level over 8 h of continuous service in the flow-through system.
Resumo:
A novel Prussian blue chemically modified electrode (CME) was constructed and characterized for liquid chromatography electrochemical detection (LCEC) of catecholamines. Both anodic and cathodic peaks could be obtained by monitoring at constant applied potential at anodic and slightly cathodic potential ranges (0.3-0.7 and -0.2-0.1 V vs. SCE), respectively. When arranged in a series configuration, using the modified electrodes as generating and collecting detectors, extremely high effective collection efficiencies of 0.91 (for norepinephrine) and 0.58 (for dihydroxyphenylacetic acid) were achieved in dual-electrode LCEC for catecholamines; and a linear response range over 3 orders of magnitude and a detection limit of 10 pg were obtained with a downstream CME as the indicating detector.
Resumo:
A Prussian Blue-modified glassy carbon electrode prepared by simple adsorption exhibited excellent electrocatalytic activity in the oxidation of hydrazine in acidic media. A film of the perfluorosulphonic acid polymer Nafion coated on top of the Prussian Blue-modified glassy carbon electrode can improve the mechanical stability of the Prussian Blue layer in the flow stream. Hydrazine was detected by flow-injection analysis at the modified electrode with high sensitivity. The limit of detection was 0.6 ng.
Resumo:
Chemically modified electrodes prepared by treating the cobalt tetraphenylporphyrin modified glassy-carbon electrode at 750-degrees (HCME) are shown to catalyze the electrooxidation of hydrazine. The oxidation occurred at +0.63 V vs. Ag/AgCl (saturated potassium chloride) in pH 2.5 media. The catalytic response is evaluated with respect to solution pH, potential scan-rate, concentration dependence and flow-rate. The catalytic stability of the HCME is compared with that of the cobalt tetraphenylporphyrin adsorbed glassy-carbon electrode. The stability of the HCME was excellent in acidic solution and even in solutions containing organic solvent (50% CH3OH). When used as the sensing electrode in amperometric detection in flow-injection analysis, the HCME permitted sensitive detection of hydrazine at 0.5 V. The limit of detection was 0.1 ng. The linear range was from 50 ng to 2.4-mu-g. The method is very sensitive and selective.
Resumo:
A novel Eastman-AQ/Ni(II) chemically modified electrode (CME) produced by "double coating step" deposition of a poly(ester sulphonic acid) polymer film and Ni2+-containing crystalline species onto glassy carbon instead of a metallic nickel electrode exhibited stable electrocatalytic oxidation of numerous alpha-hydrogen compounds including carbohydrates, amines and amino acids. In cyclic voltammetry, the electrocatalysis appeared with an irreversible anodic wave at +0.55 V (vs. Ag/AgCl). The CME was adapted for constant-potential amperometric detection of these compounds in flow injection analysis. Using the CME, the linear response concentration range was between 1.0 x 10(-5) and 5.0 x 10(-2) mol/l and the detection limit was 5.0 x 10(-6) mol/l for glucose. The stability of the CME was adequate for routine quantitative application.