397 resultados para spectra properties
Resumo:
Two kinds of rare earth (RE) complexes were intercalated into zirconium bis(monohydrogenphosphate) (alpha -ZrP) by exchanging the RE complexes into the p-methyoxyaniline (PMA) preintercalated compound Zr(O3POH)(2). 2PMA (alpha -ZrP . 2PMA). Powder X-ray diffraction patterns reveal that Eu(DBM)(3)phen (DBM: dibenzoylmethane, phen: 1,10-phenanthroline) and Tb(AA)(3)phen (AA: acetylacetone) intercalated into alpha -ZrP . 2PMA. This was confirmed by the UV-visible spectra of both the RE complexes and the assemblies. At the same time, the assemblies have better luminescent properties, and the fluorescent lifetimes of RE3+ in the excited state in the assemblies are much longer than those in the complexes. The stabilities of the assemblies under UV radiation are much better than those of the RE complexes.
Resumo:
Microporous silica gel has been prepared by the sol-gel method utilizing the hydrolysis and polycondensation of tetraethylorthosilicate (TEOS). The gel has been doped with the luminescent ternary europium complex Eu(TTA)(3). phen: where HTTA = 1-(2-thenoyl)-3,3,3-trifluoracetone and phen = 1,10-phenanthroline. By contrast to the weak f-f electron absorption bands of Eu3+, the complex organic ligand exhibits intense near ultraviolet absorption. Energy transfer from the ligand to Eu3+ enables the production of efficient, sharp visible luminescence from this material. Utilizing the polymerization of methyl methacrylate or ethyl methacrylate, the inorganic/polymer hybrid materials containing Eu(TTA)(3). phen have also been obtained. SEM micrographs show uniformly dispersed particles in the nanometre range. The characteristic luminescence spectral features of europium ions are present in the emission spectra of the hybrid material doped with Eu(TTA)3 phen. (C) 2000 Kluwer Academic Publishers.
Resumo:
Transparent organic-inorganic hybrid monoliths containing rare-earth complexes (Eu(TTA)(3)Phen, Tb(Sal)(3)) were prepared via the sol-gel technique. It could be observed by transmission electron microscopy that the fluorescent particles are distributed in the matrix at the microscopic level. The matrix is composed of organic-inorganic semiinterpenetrating networks, i.e., PHEMA-SiO2 system. The fluorescence emission spectra of samples are similar to those from corresponding powdered Eu(III) and Tb(III) complexes, and the half-widths of the strongest bands are less than 10 nm, which indicates that the monolith exhibits high fluorescence intensity and color purity. Furthermore, the fluorescence spectra exhibit no obvious change with decreasing nanoparticle size of the rare-earth complex. The fluorescence lifetimes of samples are longer than pure Eu(III), Tb(III) complexes, respectively. Samples irradiated with an UV lamp (365 nm) are still transparent but become bright red and green in color due to fluorescence of Eu(III) and Tb(III) complexes. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Eu(III)-octa-4-(tetrahydrofurfuroxy) phthalocyanine (EuPc2') was synthesied and characterized by elementary analysis, IR, MS, UV-vis spectra. EuPc2' has good film-forming ability from determination of isotherm of pi-A. The complex LB film was formed by depositing of EuPc2' on a quartz slide with the LB techniques of the Z-type, The luminescent properties of pure and doped LS films were determined. The results showed that pure films have good luminescent properties, the thicker the LB films, the stronger the fluorescent intensity. The films doped with o-phenanthroline (abbreviated as phen) made the relative intensity of fluorescent emission behavior enhance in comparison to that of pure LB film, But the amount of phen may be not too much. Our results showed that EuPc2':phen = 1: 10 (molar ratio) has the best fluorescent behavior. The electronic spectroscopic characterization of the LB films is also given.
Resumo:
A new carboxylic acid ligand (o-amino-4-hexadecane benzoic acid, AHBA) and a corresponding terbium complex (Tb(AHB)(3)) were synthesized and characterized. A multilayer electroluminescent device with poly(N-vinylcarbazole) (PVK), 2-(4-biphenyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole (PBD) and the terbium complex as emissive layer was fabricated: glass substrate/ITO/PPV/PVK:-To(AHB)(3):PBD/Alq(3)/Al. The photoluminescence (PL) and electroluminescence (EL) spectra were discussed. This EL cell exhibited characteristic emission of terbium ions with a maximum luminance of 35 cd/m(2) at 20 V. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Stable monolayer of polyaniline doped with camphor sulfonic acid at the air-water interface has been obtained and has been successfully deposited by Langmuir-Blodgett technique onto CaF2 substrate. IR and UV-Vis-NIR spectra show that the doped molecules dedoped partially from the PANI backbone during the monolayer compression or deposition. Gas-sensing measurement indicates that the doped polyaniline LB film was sensitive to ethanol vapor at room temperature.
Preparation, structure, and properties of three-dimensional ordered alpha-Fe2O3 nanoparticulate film
Resumo:
alpha-Fe2O3 nanoparticulate films could be formed on the surface of alpha-Fe2O3 hydrosol after aging of the hydrosol or by compressing of the nanoparticles on the sol surface, in. which a three-dimensional ordered structure was constructed by the Langmuir-Blodgett; technique and colloid chemical methods. The structure of the LB film was characterized by AFM, TEM, XPS, and UV-vis spectra and small-angle X-ray diffraction. Gas-sensing measurement shows that the LB film has good sensitivity to alcohols at room temperature,
Resumo:
The spontaneous emission properties of a single layer organic film in plane optical microcavities were studied. Optical microcavity was formed by a Tris(8-quinolinolato) aluminium (Alq) film sandwiched between a distributed Bragg reflector (DBR) and a Ag metallic reflector. Two kinds of microcavities were devised by using a different DBR structure. Compared with a Alq film, significantly spectral narrowing and intensity enhancement was observed in the two microcavities, which is attributed to the microcavity effect. The spectra characteristics of the two microcavities showed that the structure of DBR has much influence on the emission properties of a microcavity. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The excitation and emission spectra of the BaLiF3:Ce3+ phosphors synthesized through solid state reaction have been measured. By investigating the properties of the excitation spectra we point out that the variation in the excitation spectra with the amount of CeF3 dopant results from the different patterns of charge compensation in the matrices. The vacancies of Li+ ions are the favorable charge compensation pattern at low concentration of CeF3 doped, but interstitial F- ions are the major charge compensation pattern when the concentration of CeF3 doped goes beyond a certain value. (C) 2000 Academic Press
Resumo:
Copper phthalocyanine derivative Langmuir-Blodgett (LB) films were prepared by vertical dipping and horizontal lifting methods. Molecular orientation of copper phthalocyanine derivative in thin films was studied by polarized UV-Vis spectra. The relationship between the molecular orientation of copper phthalocyanine in LB films and their gas-sensing properties was investigated.
Resumo:
KMgF3 doped with Eu was synthesized by mild hydrothermal method at 240 degreesC for the first time. The excitation and emission spectra of the KMgF3 : Eu2+ phosphor were measured. Comparing with the sample synthesized through solid state reaction, the variation in the excitation spectra at 360 nm resulted from the existences of V-K color centers; the low emission intensity was due to Eu2+ having transferred part energy to V-K color centers.
Resumo:
By comparing the phosphorescence spectra of Gd(acac)(3) (acac=acetylacetone), Gd(TFacac)3 (TFacac=1,1,1-trifluoroacetylacetone), the effects of fluorine replacement of hydrogen on the triplet state energy of the ligands were revealed. Fluorine can lower the triplet state energy of Hacac and make it more suitable for energy transfer towards the D-5(4) state of terbium. Organic electroluminescent devices (OELDs) with the corresponding trivalent terbium complexes as emissive layers were fabricated. Triple-layer-type devices with a structure of glass substrate/ITO (indium tin oxide)/PVK [poly(N-vinylcarbazole)]/PVK : Tb complex: PBD [2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole]/PBD/Al exhibit bright green luminescence upon applying a dc voltage. The luminance of a device with Tb(TFacac)(3)phen (1,10-phenanthroline) and Tb( TFacac) 3 as emissive layer is higher than that of the corresponding devices with Tb(acac)(3)(phen) and Tb(acac)(3) as emissive layers. The EL device with Tb(TFacac)(3)(phen) as emitter exhibits characteristic emission of Tb3+ ions with a maximum luminance of 58 cd m(-2) at 25 V.
Resumo:
A series of solid electrolytes Ce1-xGdxO2-x/2(x=0 similar to0.6) was prepared by sol-gel method. The structure, thermal expansion coefficient and electrical properties of the solid solutions were systematically studied. XRD data showed that a complete cubic fluorite structure was formed at 160 degreesC. The purity of the product prepared by the sol-gel method is higher, the grain size is uniformly smaller. They were easily sintered into highly dense ceramic pellets at 1 300 degreesC. The sintering temperature was significantly lower than that by traditionally high temperature solid phase reaction method. The thermal expansion coefficient of Ce0.8Gd0.2O1.9, determined from high- temperature XRD data, is 8. 125 X 10(-6) K-1. Impedance spectra analyses showed that the grain-boundary resistance of the solid electrolyte prepared by sol-gel method was reduced or even eliminated. The conductivity of Ce0.8Gd0.2O1.9 is 5.26 X 10(-3) S/cm at 600 degreesC. The activation energy (E-a) is 0.82 eV.
Resumo:
Hybrid materials incorporating Eu-(TTA)(3). 2H(2)O (7hereafter designated as Eu-TTA, with TTA: thenoyltrifluoroacetone) in unmodified or modified MCM-41 by 3-aminopropyl-triethoxysilane (APTES) were prepared by impregnation method. The obtained materials were characterized using X-ray diffraction (XRD), IR and diffuse reflectance spectroscopy and luminescence spectra. All the hybrid samples exhibited the characteristic emission bands of EU3+ under UV light excitation at room temperature, and the excitation spectra showed significant blue-shifts compared to the pure rare-earth complex. Although the red emission intensity in the modified hybrid was almost the half of the red emission intensity in the pure Eu-TTA complex at room temperature, the hybrid showed a much higher thermal stability due to the shielding character of the MCM-41 host.
Resumo:
Binary complexes of europium and terbium with N-propyl-4-carboxyphthalimide (NP) were prepared and characterized. The luminescence behaviors of the lanthanide complexes as well as their doped silica-based composites were investigated by fluorescence spectra. The results indicated that the lanthanide complexes showed fewer emission lines and slightly lower intensities in silica matrix than that of corresponding pure complexes. The lifetimes of the lanthanide complexes became longer when they were incorporated in silica matrix. (C) 2001 Elsevier Science B.V. All rights reserved.