344 resultados para nitrogen cycling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stainless-steel net is used to support a zeolite NaA membrane synthesized using a 'seeded-growth' method. The zeolite and stainless-steel net are tightly integrated (see Figure), showing large-scale order and high mechanical stability. High oxygen permeance and high permselectivity for O-2 over N-2 (about 7) is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel poly sulfone/polyethylene oxide/silicone rubber (PSOPEO/SR) multilayer composite membrane was fabricated by double coating polysulfone substrate membrane with polyethylene oxide and silicone rubber. Gas permeation experiments were performed at 30 degrees C for hydrogen and nitrogen. PSf(PEO/SR membrane displayed high and steady performance for H-2/N-2: permeances of H-2 and N-2 of 49.51 and 0.601 GPU, respectively, and H-2/N-2 ideal separation factor of 82.3. It was explained that layer interfaces due to the introduction of PEO layer act as the permselective media and are responsible for the higher H-2/N-2 ideal separation factor which has exceeded the intrinsic permselectivities of the three polymers used in this study. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of redox cycling on a Ni-YSZ anode prepared from 50 wt.% NiO and 50 wt.% YSZ was investigated by using temperature-programmed reduction (TPR), XRD and SEM techniques. XRD results showed that NiO was formed during re-oxidation. Both the XRD and TPR results depicted that the conversion of nickel to NiO depended on the re-oxidation temperature. The oxidation of Ni to NiO occurred quickly in the initial several minutes and then reached a quasi equilibrium. The TPR profiles tracing the redox cycling showed that it brought continuous changes in the NiO micro-structure at 800 degrees C, whereas at 600 degrees C it had only little effects on the reduction of NiO. Re-oxidation resulted in the formation of spongy aggregates of NiO crystallites. Redox cycling at 800 degrees C led to a continuous decrease in the primary crystallite size of NiO and a high dispersion of the Ni particles. A continuous expansion of the slice sample was observed in both of the oxidized and reduced states during the redox cycling at 800 degrees C, whereas this process did not occur during the redox cycling at 600 degrees C. (c) 2005 Elsevier B.V All rights reserved.