518 resultados para Tunable luminescence
Resumo:
A series of novel pH- and temperature-responsive diblock copolymers composed of poly(N-isopropylacrylamide) (PNIPAM) and poly[(L-glutamic acid)-co-(gamma-benzyl L-glutamate)] [P(GA-co-BLG)] were prepared. The influence of hydrophobic benzyl groups on the phase transition of the copolymers was studied for the first time. With increasing BLG content in P(GA-co-BLG) block, the thermal phase transition of the diblock copolymer became sharper at a designated pH and the critical curve of phase diagram of the diblock copolymer shifted to a higher pH region.
Resumo:
A simple layer-by-layer (LBL) electrostatic adsorption technique was developed for deposition of films composed of alternating layers of positively charged poly(diallyldimethylammonium chloride) (PDDA) and negatively charged multiwall carbon nanotubes bearing platinum nanoparticles (Pt-CNTs). PDDA/Pt-CNT film structure and morphology up to six layers were characterized by scanning electron microscopy and ultraviolet-visible spectroscopy, showing the Pt-CNT layers to be porous and uniformly deposited within the multilayer films.
Resumo:
We developed an approach to realize blue, green and red emission from top-emitting white organic light-emitting diodes (OLEDs) through depositing exterior tunable optical films on top of the OLEDs. Three primary colors for full color display including blue, green and red emission are achieved by controlling the wavelength-dependent transmittance of the multilayer optical films overlaid on the emissive layer.
Resumo:
Here, we report a simple and Sensitive colorimetric detection method for Hg2+ ions With a tunable detection range based on DNA oligonucleotides and unmodified gold nanoparticles (DNA/AuNPs) sensing system. Complementary DNA strands with T-T mismatches could effectively protect AuNPs from salt-induced aggregation. While in the presence of Hg2+ ions T-Hg2+-T coordination chemistry leads to the formation of DNA duplexes, and AuNPs are less well protected thus aggregate at the same salt concentration, accompanying by color change from red to blue. By rationally varying the number of T-T mismatches in DNA oligonucleotides, the detection range could be tuned.
Resumo:
Hollow deoxyribonucleic acid (DNA)/poly-L-lysine (PLL) capsules were successfully fabricated through a layer-by-layer (LbL) self-assembly of DNA and PLL on porous CaCO3 microparticles, followed by removal of templates with ethylenediamine tetraacetic acid disodium salt (EDTA). The enzymatic degradation of the capsules in the presence of alpha-chymotrypsin was explored. The higher the enzyme concentration, the higher is the degradation rate of hollow capsules. in addition, glutaric dialdehyde (GA) cross-linking was found to be another way to manipulate degradation rate of hollow capsules.
Resumo:
Dextran sulfate (DS)/poly-L-lysine (PLL) microcapsules are fabricated by an in situ coacervation method using DS-doped CaCO3 microparticles as templates. Twinned superstructures or spherical CaCO3 microparticles are produced depending on DS concentration in the starting Solution. DS/PLL microcapsules with ellipsoidal or spherical outline are obtained after removal of templates in disodium ethylene diamine tetraacetate dehydrate (EDTA) without PLL. Their shell thickness and negative surface charges increase with the DS weight percentage in the templates. The surface potential of DS/PLL microcapsules.
Resumo:
Well-dispersed YVO4:Ln(3+) (Ln = Eu, Dy, and Sm) nanocrystals with uniform morphology and size have been synthesized via a facile solvothermal route. XRD results demonstrate that all of the three samples can be well indexed to the pure tetragonal phase Of YVO4, indicating that the Eu3+, Dy3+, and Sm3+ have been effectively doped into the host lattices of YVO4. TEM images show that the YVO4 nanocrystals exhibit ellipsoid shape and a mean size of about 20 nm, which is in good agreement with the estimation of XRD results.
Resumo:
Uniform octahedral YVO4:Eu3+ microcrystals have been successfully prepared through a designed two-step hydrothermal conversion method. One-dimensional precursor Y4O(OH)(9)NO3 was first prepared through a simple hydrothermal process without using any surfactant, catalyst or template. Subsequently, well-defined octahedral YVO4 was synthesized at the expense of the precursor during a hydrothermal conversion process. XRD results demonstrate that the diffraction peaks of the final product can be well indexed to the pure tetragonal phase of YVO4.
Resumo:
One-dimensional La(OH)(3) nanocrystals with multiform morphologies have been successfully synthesized by a facile bydrothermal process without using any surfactant, catalyst, or template. It can be found that the pH values of the initial solutions and the alkaline sources play a crucial role in controlling the morphologies of the products. The possible formation process of the 1D samples was investigated in detail, Furthermore, the as-prepared Tb3+-doped La(OH)(3) samples show a strong green emission corresponding to D-5(4)-F-7(5) transition of the Tb3+ ions under ultraviolet or low-voltage excitation.
Resumo:
The facile, rapid, and effective synthesis of coordination polymer La(1,3,5-BTC)(H2O)(6) has been realized via direct precipitation at room temperature. It is found that the crystal structure is of monoclinic, space group Cc. The doped Eu3+ or Tb3+ ions samples have the same phase and exhibit red and green emissions under UV light excitation, respectively.
Resumo:
CuIn(WO4)(2) porous nanospindles and nanorods were synthesized through a low-cost hydrothermal method without introducing any template or surfactants. An interesting formation mechanism, namely "oriented attachment", was observed for the growth of nanorods based on the experimental process and the anisotropic intrinsic crystalline structure of CuIn(WO4)(2), which is uncommon in such a system. The near-infrared luminescence of lanthanide ions (Er, Nd, Yb and Ho) doped CuIn(WO4)(2) nanostructures, especially in the 1300-1600 nm region, was discussed and of particular interest for telecommunications applications. X-Ray diffraction, scanning electron microscopy, transmission electron microscopy, electron diffraction and photoluminescence spectra were used to characterize these materials.
Resumo:
in this communication, a novel Er3+ complex Er(PT)(3)TPPO [PT = 1-phenyl-3-methyl-4-tert-butylbenzoyl-5-pyrazolone, TPPO = triphenyl phosphine oxide] is successfully synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. Its optical properties and the energy transfer process from the ligand PT to the Er3+ ion are investigated, the typical near-infrared (NIR) luminescence (centered at around 1530 nm) is attributed to the I-4(13/2) -> I-4(15/2) transition of Er3+ ion which results from the efficient energy transfer from PT to Er3+ ion (an antenna effect). The wider full width at half maximum (78 nm) peaked at 1530 nm in the emission spectrum and the Judd-Ofelt theory calculation on the radiative properties suggest that Er(PT)(3)TPPO should be a promising candidate for tunable lasers and planar optical amplifiers.
Resumo:
Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals have been successfully synthesized by a solvothermal process followed by a subsequent heat treatment at 800 degrees C. Powder X-ray diffraction, transmission electron microscopy, upconversion photoluminescence spectra, and kinetic decay were used to characterize the samples. Under single-wavelength diode laser excitation of 980 nm, the bright blue emissions of Lu2O3:Yb3+, Tm3+ nanocrystals near 477 and 490 nm were observed due to the (1)G(4)-> H-3(6) transition of Tm3+. The bright green UC emissions of Lu2O3:Er3+ nanocrystals appeared near 540 and 565 nm were observed and assigned to the H-2(11/2)-> I-4(15/2) and S-4(3/2)-> I-4(15/2) transitions, respectively, of Er3+. The ratio of the intensity of green luminescence to that of red luminescence decreases with an increase of concentration of Yb3+ in Lu2O3:Er3+ nanocrystals.
Resumo:
YPO4 nano/microcrystals with multiform crystal phases and morphologies, such as hexagonal nano/submicroprisms, spherical-like nanoparticles, and nanorods with different length/diameter ratios as well as tetragonal nanospindles, have been synthesized via a facile hydrothermal route. A series of controlled experiments indicate that the pH values in the initial solution, phosphorus sources, and the organic additive trisodium citrate (Cit(3-)) are responsible for crystal phase and shape determination of final products. It is found that Cit(3-) as a ligand and shape modifier has the dynamic effect by adjusting the growth rate of different facets under different experimental conditions, resulting in the formation of various geometries of the final products. The possible formation mechanisms for products with diverse architectures have been presented.