437 resultados para Seager, J.B. Allan
Resumo:
CpCr(NO)(CO)_2与Fe(C_5H_4S)_2S反应,形成氧化-还原产物CpCr(NO)(SC_5H_4)_2Fe(1)。双杂核二茂铁化合物CpM(NO)(EC_5H_4)_2Fe[M=Mo,E=S(2a),Se(2b);M=W,E=S(4a),Se(4b)]、CpMo(NO)(SC_5H_4)_2Fe(3)、Cp_2Mo(SeC_5H_4)_2Fe(6)和Cp_2W(SC_5H_4)_2Fe(7)可通过Fe(C_5H_4ELi)_2·2THF(E=S,Se)与CpM(NO)I_2(M=Mo,W)、[CpMo(NO)I_2]_2或Cp_2MCl_2(M=Mo,W)反应制得。三核杂原子二茂铁化合物[CpCr(NO)_2]_2(EC_5H_4)_2Fe[E=S(8a),Se(8b)],由Fe(C_5H_4ELi)_2·2THF(E=S,Se)与二倍摩尔量的CpCr(NO)_2I反应制备。通过AgBF_4氧化2a得到二茂铁离子型化合物[CpMo(NO)(SC_5H_4)_2Fe]~+BF_4~-(5)。采用元素分析、红外光谱、~1H和~(13)C NMR谱以及EI-MS表征了所合成的新型化合物。
Resumo:
通过高温固相反应法,在高纯N_2气氛中合成了BaLiF_3,KMgF_3中单掺和双掺Eu,Gd的ABF_3型复合氟化物。研究了各类掺杂体系的光谱特性,观察到了Gd~(3+)→Eu~(2+)的能量传递,分析了能量传递过程,探讨了能量传递机理,并讨论了Gd~(3+)和Eu~(2+)的取代格位。
Resumo:
Electroreduction of vitamin B-2 (VB2) was studied by in situ circular dichroism (CD) spectroelectrochemistry (SEC) with a long optical path length thin layer cell (LOPLTLC). The results showed that the electroreduction of VB2 in phosphate buffer solution (PBS) (PH 6.8) was a two-electron electrochemical process with weak adsorption of the reactant at the glassy carbon (GC) electrode surface. The CD spectra change of VB2 in the reduction process was explained with the theory of electronic states. We also treated the CD spectra with a singular value decomposition least square (SVDLS) method, and have found not only the number of components and their spectra, but also the fraction distribution of each component in the electroreduction process of VB2.
Resumo:
Well-defined block copolymers of L-lactide-b-epsilon-caprolactone were synthesized by sequential polymerization using a rare earth complex, Y(CF3COO)(3)/Al(iso-Bu)(3), as catalyst system. The compositions of the block copolymers could be adjusted by manipulating the feeding ratio of comonomers. The characterizations by GPC, H-1 NMR, C-13 NMR, and DSC displayed that the block copolymer, poly(epsilon-caprolactone-b-L-lactide) [P(CL-b-LLA)], had a narrow molecular weight distribution and well-controlled sequences without random placement.
Resumo:
By mechanism-transformation (anionic --> cationic) poly(styrene-6-2-ethyl-2-oxazoline) diblock copolymer, PS-b-PEOx, was synthesized in two steps. The first step is the polymerization of styrene block capped with ethylene oxide and its tosylation; the second step is the cationic ring-opening polymerization of 2-ethyl-2-oxazoline. The products were thoroughly characterized by various methods, such as H-1-NMR, IR, DMA, TEM and SAXS. The results show that the copolymer obtained possesses high molecular weight and narrow molecular weight distribution.
Resumo:
Monte Carlo simulations were used to model A/B/A-B ternary mixtures with different AB diblock copolymer volume fractions for which both the dispersed and continuous phase volume fractions were kept constant. For concentrations of the diblock copolymer below a critical value, the domain size increment of the dispersed phase decreases linearly with the copolymer concentration. This is in agreement with the predictions of Noolandi and Hong. The dependence of the domain size as a function of the copolymer volume fraction can also be fitted by the equation of Tang and Huang. Our simulations indicate, for the first time, that the micelles form before saturation of the interface occurs. This means that the formation of the micelles is not a result of the saturation of the interface.
Resumo:
The effect of adding diblock copolymer poly(styrene-b-4-vinylpyridine) (P(S-b-4VPy), to immiscible blends of syndiotactic polystyrene (sPS)/thermoplastic polyurethane (TPU) on the morphology, thermal transition, crystalline structure, and rheological and mechanical properties of the blends has been investigated. The diblock copolymer was synthesized by sequential anionic copolymerization and was melt-blended with sPS and TPU. Scanning electron microscopy (SEM) showed that the added block copolymer reduced the domain size of the dispersed phase in the blends. Differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) revealed that the extent of compatibility between sPS and TPU affected the crystallization of the sPS in the blends. Tensile strength and elongation at break increased, while the dynamic modulus and complex viscosity decreased with the amount of P(S-b-4VPy) in the blend. The compatibilizing effect of the diblock copolymer is the result of its location at the interface between the sPS and the TPU phases and penetration of the blocks into the: corresponding phases, i.e. the polystyrene block enters the noncrystalline regions of the sPS, and the poly(4-vinylpyridine) block interacts with TPU through intermolecular hydrogen bonding. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The compatibilizing effect and mechanism of poly(styrene-b-4-vinylpyridine) diblock copolymer, P(S-b-4VPy), on the immiscible blend of polystyrene (PS)/zinc salt of sulphonated polystyrene (Zn-SPS) were studied. SEM results show that the domains of the dispersed phase in the blend become finer. DSC experiments reveal that the difference between the two T-g's corresponding to the phases in the blends becomes larger on addition of P(S-b-4VPy), mainly resulting from dissolving of the poly(4-vinylpyridine (P4VPy) block in the Zn-SPS phase. FTIR analysis shows that compatibility of P4VPy and Zn-SPS arises from the stoichiometric coordination of the zinc ions of Zn-SPS and pyridine nitrogens of P4VPy. SAXS analysis indicates the effect of the P(S-b-4VPy) content on the structure of the compatibilized blends. When the content of the block copolymer is lower than 4.1 wt%, the number of ion pairs in an aggregate in the Zn-SPS becomes smaller, and aggregates in ionomer in the blend become less organized with increasing P(S-b-4VPy). When the P(S-b-4VPy) content in the blend is up to 7.4 wt%, a fraction of P(S-b-4VPy) form a separate domain in the blend. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The compatibilization effect of poly(styrene-b-2-ethyl-2-oxazoline) diblock copolymer, P(S-b-EOx), on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and poly(ethylene-co-acrylic acid) (EAA) is examined in terms of phase structure and thermal, rheological and mechanical properties, and its compatibilizing mechanism is investigated by Fourier-transform infrared spectroscopy. The block copolymer, synthesized by a mechanism transformation copolymerization, is used in solution blending of PPO/EAA. Scanning electron micrographs show that the blends exhibit a more regular and finer dispersion on addition of a small amount of P(S-b-EOx). Thermal analysis indicates that the grass transition of PPO and the lower endothermic peal; of EAA components become closer on adding P(S-b-EOx), and the added diblock copolymer is mainly located at the interface between the PPO and EAA phases. The interfacial tension estimated by theological measurement is significantly reduced on addition of a small amount of P(S-b-EOx). The tensile strength and elongation at break increase with the addition of the diblock copolymer for PPO-rich blends, whereas the tensile strength increases but the elongation at break decreases for EAA-rich blends. This effect is interpreted in terms of interfacial activity and the reinforcing effect of the diblock copolymer, and it is concluded that the diblock copolymer plays a role as an effective compatibilizer for PPO/EAA blends. The specific interaction between EAA and polar parts of P(S-b-EOx) is mainly hydrogen bonding. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A new complex K5H[Co-4(VW9O33)(2)]. 5H(2)O was prepared and its structure was determined by X - ray diffraction analysis. The anion has alpha - beta - Keggin structure. Two (VW9O33)(7-) moieties (alpha - B isomers) are linked via four Co(11)O-6 groups. The single crystal of the title complex is monoclinic P2(1/n) with a = 1.2307(3) nm, b = 2.1250(4) nm, c = 1.5817(3) nm, beta = 91.86(3)degrees, V = 4.1343 (14) nm(3), R = 0.0895, R-w = 0.2180.
Resumo:
Based on the complex crystal chemical bond theory, the formula of Liu and Cohen's, which is only suitable for one type of bond, has been extended to calculate the bulk modulus of ternary chalcopyrite A(I)B(III)C(2)(VI) and A(II)B(IV)C(2)(V) which contains two types of bonds. The calculated results are in fair agreement with the previous theoretical values reported and experimental values. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
合成了新化合物K_5H[Co_4(VW_9O_(33))·5H_2O,并运用IR,UV-ViS,DTA和单晶X射线衍射对其结构进行了表征.测定结果证实标题化合物具有α-B-Keggin型结构,两个(VW_9O_(33)~(7-)结构单元由四个Co(Ⅱ)O_6 八面体连接.杂多化合物属单斜晶系P2_(1/n),a=1.2307(3)nm,b=2.1250(4)nm,c=1.5817(3)nm,β=91.86(3)°,V=4.1343(14)nm~3,R=0.0895,R_w=0.2180.
Resumo:
Ethylene polymerization by zirconocene-B(C6F5)(3) catalysts with various aluminum compounds has been investigated. It is found that the catalytic activity depended on zirconocenes used, and especially on the type of aluminum compounds. For Et(H(4)Ind)(2)ZrCl2 (H(4)Ind : tetrahydroindenyl), the activity decreases in the following order: Me3Al > i-Bu3Al > Et3Al much greater than Et2AlCl. While for Cp2ZrCl2(Cp : cyclopentadienyl), it varies as follows: i-Bu3Al > Me3Al much greater than Et3Al. Furthermore, the activity is significantly affected by the addition mode of the catalytic components, which may imply that the formation of active centers is associated with an existing concentration of catalytic components. Results of thermal behavior of polyethylene (PE) studied by differential scanning calorimetry(DSC) show that crystallinity of the polymer prepared with Et3Al is higher than that with Me3Al or i-Bu3Al. It is also found that the number-average molecular weight ((M) over bar) of the polymers prepared with Me3Al or i-Bu3Al is much higher than that with Et3Al. H-1-NMR studies substantiate that i-Bu3Al is a more efficient alkylation agent of Cp2ZrCl2 in comparison with Me3Al. (C) 1997 John Wiley & Sons, Inc.
Resumo:
It was found that vitamin B-12 could be strongly adsorpted on the anodized glassy carbon electrode to form a vitamin Thy-modified glassy carbon electrode. The modified electrode is stable in a wide pH range. The electrochemical characteristics of the modified electrode were studied in details. In addition, it was found that the reduction of oxygen could be catalyzed by the modified electrode to form H2O2. An EC mechanism was suggested for the process, and the follow up chemical reaction might he the rate determined step.
Resumo:
The electrochemical studies on vitamin B-12 and its derivatives were reviewed in this paper. The importance of electrochemical studies for explaining the mechanism of B-12 coenzyme in body was discussed. The latest results of electrochemical studies on vitamin B-12 and its derivatives was reviewed. A prospect for the electrochemical studies in vitamin B-12 and its derivatives was suggested.