484 resultados para SOL-GEL COMPOSITES
Resumo:
A new type of sulfonated clay (clay-SO3H) was prepared by the ion exchange method with the sulfanilic acid as the surfactant agent. The grafted amount of sulfanilic acid in clay-SO3H was 51.8 mequiv. (100 g)(-1), which was measured by thermogravimetric analysis (TGA). Sulfonated poly(ether ether ketone) (SPEEK)/clay-SO3H hybrid membranes which composed of SPEEK and different weight contents of clay-SO3H, were prepared by a solution casting and evaporation method. For comparison, the SPEEK/clay hybrid membranes were produced with the same method.
Resumo:
Sulfonated poly(ether ether ketone) (SPEEK) and aminopropyltriethoxysilane (KH550) hybrid membranes doped with different weight ratio of phosphotungstic acid (PWA) were prepared by the casting procedure, as well as PWA as a catalyst for sol-gel process of KH550. The chemical structures of hybrid membranes were characterized by energy dispersive X-ray spectrometry (EDX) and Fourier transform infrared spectroscopy (FTIR). The morphology of hybrid membranes was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results had proved the uniform and homogeneous distribution of KH550 and PWA in these hybrid membranes.
Resumo:
In this study. Nafion (R) 117 membrane is surface-modified with mesoporous silica layers through in situ surfactant-templated sol-gel reaction. The reaction makes use of tetraethyl orthosilicate (TEOS) under acidic condition via dip-coating technique on both sides. Scanning electron microscopy (SEM), Fourier transformation infrared (FTIR), and thermogravimetric analysis (TGA) are employed to characterize the resultant membranes. Proton conductivity and methanol permeability of the membranes are also studied.
Resumo:
Bulk and nano-materials Sr2CeO4 were prepared by solid-state reaction and sol-gel technique, respectively. Photoluminescence shows that luminescence has the characteristic of a ligand-to-metal charge transfer (CT) emission. Compared with bulk Sr2CeO4, the nano-material exhibits stronger emission intensity, longer decay time, and higher CT excitation energy. Three CT excitation peaks were observed in both bulk and nano samples.
Resumo:
Rhombohedral-calcite and hexagonal-vaterite types of LuBO:Eu3+ microparticles with various complex self-assembled 3D architectures have been prepared selectively by an efficient surfactant- and template-free hydrothermal process for the first time. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, photoluminescence, and cathodoluminescence spectra as well as kinetic decays were used to characterize the samples.
Resumo:
LaGaO3:Sm3+, LaGaO3:Tb3+ and LaGaO3: Sm3+, Tb3+ phosphors were prepared through a Pechini-type sol-gel process. X-Ray diffraction, field emission scanning electron microscopy, photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the synthesized phosphors. Under excitation with ultraviolet light (250-254 nm), the LaGaO3: Sm3+, LaGaO3: Tb3+ and LaGaO3: Sm3+, Tb3+ phosphors mainly show the characteristic broadband emission (from 300 to 600 nm with a maximum around 430 nm) of the LaGaO3 host lattice, accompanied by the weak emission of Sm3+ ((4)G(5/2) -> H-6(5/2), H-6(7/2), H-6(9/2) transitions) and/or Tb3+ (D-5(3,4) -> F-7(6,5,4,3) transitions). However, under excitation by low-voltage electron beams (1-3 kV), the LaGaO3: Sm3+, LaGaO3: Tb3+ and LaGaO3: Sm3+, Tb3+ phosphors exhibit exclusively the characteristic emissions of Sm3+ and/or Tb3+ with yellow (Sm3+), blue (Tb3+, with low concentrations) and white (Sm3+ + Tb3+) colors, respectively.
Resumo:
In this paper, we present a facile and general synthetic route to high-quality alkaline earth metal fluoride (AEF(2), AE = Ca, Sr, Ba) nanocrystals and CaF2:Tb3+ nanocrystals based on the thermal decomposition of corresponding trifluoroacetate precursors in hot oleylamine. X-ray diffraction, transmission electron microscopy, thermogravimetric and differential thermal analysis, Fourier transform infrared spectra, photoluminescence spectra, and kinetic decays were employed to characterize the samples. The use of single-source precursors plays an important role in the formation of high-quality AEF(2) nanocrystals, and the formation process is demonstrated in detail.
Resumo:
Urea bridged organic-inorganic hybrid mesoporous SiO2 materials (U-BSQMs) were synthesized through a sol-gel procedure by co-condensation of bis(triethoxysilyl propyl) urea (BSPU) under basic conditions using cetyltrimethylammonium bromide (CTAB) as organic template. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the mesoporous structure of the sample. Fourier-transform infrared spectroscopy (FT-IR), solid state CP-MAS NMR spectroscopy of Si-29 (Si-29, CP-MAS NMR) and C-13 (C-13 CP NMR) indicated that most of the Si-C bonds are unbroken during the synthesis process.
Resumo:
The core-shell structured YNbO4:Eu3+/Tb3+@SiO2 particles were realized by coating the YNbO4:Etr(3+)/Tb3+ phosphors onto the surface of spherical silica via a sol-gel process. The obtained materials were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform IR spectroscopy (FT-IR), photoluminescence (PL) spectra, and cathodoluminescence (CL) spectra.
Resumo:
The biosensing application of single-walled carbon nanohorns (SWCNHs) was demonstrated through fabrication of an amperometric glucose biosensor. The biosensor was constructed by encapsulating glucose oxidase in the Nafion-SWCNHs composite film. The cyclic voltammograms for glucose oxidase immobilized on the composite film displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of -0.453V. The biosensor had good electrocatalytic activity toward oxidation of glucose.
Resumo:
Spinel ferrite, MFe2O4 (M = Co, Ni), ribbons with nanoporous structure were prepared by electrospinning combined with sol-gel technology. The ribbons were formed through the agglomeration of magnetic nanoparticles with PVP as the structure directing template. The length of the polycrystalline ribbons can reach millimeters, and the width of the ribbons can be tuned from several micrometers to several hundred nanometers by changing the concentration of precursor. The nanoporous structure was formed during the decomposition of PVP and inorganic salts.
Resumo:
Porous SnO2 and SnO2-Eu3+ nanorods have been facilely prepared using triphenyltin hydroxide microrods as precursors. The porous structure of SnO2 nanorods, which was aggregated by small SnO2 nanocrystallites, has been confirmed by TEM images and nitrogen adsorption-desorption isotherms. The optical property of the porous SnO2-Eu3+ nanorods was investigated by UV-vis absorption and photoluminescence spectra.
Resumo:
Uniform octahedral YVO4:Eu3+ microcrystals have been successfully prepared through a designed two-step hydrothermal conversion method. One-dimensional precursor Y4O(OH)(9)NO3 was first prepared through a simple hydrothermal process without using any surfactant, catalyst or template. Subsequently, well-defined octahedral YVO4 was synthesized at the expense of the precursor during a hydrothermal conversion process. XRD results demonstrate that the diffraction peaks of the final product can be well indexed to the pure tetragonal phase of YVO4.
Resumo:
Two new silica-based organic-inorganic hybrid materials (B104SGs and O104SGs) doped with a binary mixture of imidazolium and phosphonium ionic liquids have been synthesized and used as sorbents in batch system for rare earths (RE) separation. Imidazolium ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate (C(4)mim(+)PF(6)(-)) or 1-octyl-3-methylimidazolium hexafluorophosphate (C(8)mim(+)PF(6)(-)) acted as porogens to prepare porous materials and additives to stabilize extractant within silica gel.
Resumo:
A series of dysprosium complex doped xerogels with the same first ligand (acac = acetylacetone) and different neutral ligands were synthesized in situ via a sol-gel process. The Fourier transform infrared (FTIR) spectra, diffuse reflectance (DR) spectra, and near-infrared (NIR) luminescent properties of dysprosium complexes and dysprosium complex doped xerogels are described in detail. The results reveal that the dysprosium complex is successfully synthesized in situ in the corresponding xerogel. Excitation at the maximum absorption wavelength of the ligands resulted in the characteristic NIR luminescence of the Dy3+ ion, which contributes to the energy transfer from the ligands to the central Dy3+ ion in both the dysprosium complexes and xerogels via an antenna effect.