394 resultados para Petroleum well drilling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the development of petroleum exploration in Gaoyou Depression, both old and new areas have been the active exploration targets, so the study of petroleum accumulation is significant to the petroleum exploration in the study area and the integrated oil and gas accumulation theory. Based on hydrocarbon accumulation theory and systematical research methods and combined with the structural characteristics of Gaoyou Depression, Chenbao and East of Chenbao were selected as the study areas in this dissertation, oil and gas migration pathways, accumulation periods, as well as accumulation models were studied, and favorable exploration targets were proposed. There develop three sets source rocks, which are Tai-2 Member, Fu-2 Member and Fu-4 Member respectively. Tai-2 Member is the predominant source rock in the eastern part. Fu-2 Member mainly occurs in the northern slope, while Fu-4 Member develops in the deep depression. In the study area, oil mainly comes from Fu-2 Member of Liuwushe subsag. The lower limit of TOC is 0.4%, and active source rock mostly distributed in the south fault-step zone. The source rock in Liuwushe subsag began to generate hydrocarbon in the late of Dainan depositional stage and the threshold was 2300m. The macro and micro characteristics of reservoirs and the reservoir heterogeneity characteristics of the Fu-1 Member were studied systematicly. The results show that Fu-1 Member, which has better reservoir properties, are medium porosity-medium permeability reservoir. The reservoir permeability has good correlation with porosity connectivity. The reservoirs have strong dissolution, pores are mainly thin to medium throat, and throat radii are distributed concentratedly, the sorting is good and pore structures are homogeneous. Sandstone reservoirs whether in the plan view, interlayer or in layers have a certain degree of heterogeneity, in particular, the heterogeneity in layers directly affect and control the oil and gas migration and accumulation. By analyzing the lithology correlation of the fault walls, shale smear, cross section stress, the configuration of fracture active periods and hydrocarbon generation and expulsion periods and fuzzy comprehensive evaluation, the main faults sealing were evaluated. The results show that the faults in Chenbao and East of Chenbao had poor sealing properties in Sanduo period and could be used as the migration pathways at that time. After Sanduo period, the tectonic stress fields in the area changed largely, and, consequently, the fault properties converted from tensional shear to compressive shear, the faults changed progressively from close to open, so the faults sealing became better and were conducive to the preservation of oil and gas reservoirs. According to the seismic event suspension modes and profile configurations above and under the unconformities, combined with tectonic evolutions of the study areas, the unconformity types can be classified into truncation unconformity, overlapped unconformity and parallel unconformity and the distribution characteristics of unconformities in the plan view was also studied. The unconformity structure was divided into basal conglomerate, weathered clay and semi-weathered layer vertically in the study area and this kind of structure make unconformities to be effective oil and gas migration pathways and is significant to hydrocarbon accumulation in a parts of areas. With the analyses of typical oil and gas reservoirs in the study area, combined with the research results of pathway systems, hydrocarbon accumulation models were established and the oil and gas accumulation laws in Chenbao and East of Chenbao analyzed. The oil and gas came from Liuwushe subsag and Liuliushe subsag. The oil and gas from Liuwushe subsag mainly migrated from the structural high parts into the fault-step zone along strata in northeast direction, a part of them migrated upward into the fault-step zone and the Wubao low uplift along Wu-1 Fault in northeast direction. The oil and gas from Liuliushe subsag mainly migrated into the upper reservoirs through Wu-2 fault, and lesser oil and gas migrated into the fault-step zone because of the controls of cross-section orientation, depression center and the hydrocarbon formation tendency. The favorable exploration targets in Chenbao and East of Chenbao have been concluded: the southern fault-step zone is a favorable oil and gas accumulation zone of Liuwushe subsag, and they are fault block reservoirs where fault acted as the barriers, the main target intervals are Fu-1 Member and Fu-3 Member in palaeocene; Oil and gas in the middle and northern fault-step zone mainly laterally migrated from the south areas, and the main target interval is Fu-3 Member in palaeocene; Fu-1 Member and the reserviors above the Wubao subsag are still the focuses in future explorations. The results of this study have important guiding significance for the future oil and gas exploration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today, because of high petroleum consumption of our country, society steady development and difficulty increase in new resources exploration, deep exploitation of the existing oilfield is needed. More delicate reservoir imaging and description, such as thin layer identification, interlayer exploitation monitoring, subtle structure imaging, reservoir anisotropy recognition, can provide more detail evidence for new development adjustment scheme and enhanced oil recovery. Now, the people have already realized the 3D VSP technique more effective than the general methods in solving these aspects. But VSP technique especially 3D VSP develop slowly due to some reasons. Carrying out the research of VSP technique, it will be very useful to the EOR service. 3D VSP techniques include acquisition、data processing and interpretation. In this paper, the author carried out some researches around acquisition and processing. The key point of acquisition is the survey design, it is critical to the quality of the data and it will influence the reservoir recognition as follows. The author did detailed researches on the layout pattern of shot point and geophone. Some attributes relate to survey design such as reflectivity, incidence angle, observation area, reflection points distribution, fold, minimum well source distance, azimuth angle and so on are studied seriously. In this geometry design of 3D-VSP exploration in deviated wells, the main problems to be solved are: determining the center position of shots distribution, the effect of shots missing on coverage areas and coverage times,locating the shots and receivers of multi-wells. Through simulating and analyzing, the above problems are discussed and some beneficial conclusions are drawn. These will provide valuable references to actual survey design. In data processing, researches emphasize on those relatively key techniques such as wavefield separation, VSP-CDP imaging, the author carried out deep researches around these two aspects. As a result, variant apparent slowness wavefield separation method developed in this article suit the underground variant velocity field and make wavefield separation well, it can overcome reflection bending shortage aroused by conventional imaging method. The attenuateion range of underground seismic wave is very important for amplitude compensation and oil/gas identification.In this paper, seismic wave attenuateion mechanism is studied by 3D-VSP simulateion and Q-inversion technique. By testing with seismic data, the method of VSP data attenuateion and relationship of attenuateion attribute variant with depth is researched. Also the software of survey design and data processing is developed, it fill the gap of VSP area in our country. The technique developed applied successfully in SZXX-A Oilfield、QKYY-B Oilfield、A area and B area. The good results show that this research is valuable, and it is meaningful to the VSP technique development and application of offshore oil industry and other areas in our country.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exploration study proves that East sea shelf basin embeds abundant hydrocarbon resources. However, the exploration knowledge of this area is very low. Many problems in exploration are encountered here. One of them is that the gas reservoir of this area, with rapid lateral variation, is deeply buried. Correlation of Impendence between sandstone, gas sand and shale is very poor. Another problem is that the S/N ratio of the seismic data is very low and multiples are relatively productive which seriously affect reservoir identification. Resolution of the seismic data reflected from 2500-3000 meter is rather low, which seriously affects the application of hydrocarbon direct identification (HDI) technology. This research established a fine geological & geophysical model based on drillingwell logging、geology&seismic data of East sea Lishui area. A Q value extraction method from seismic data is proposed. With this method, Q value inversion from VSP data and seismic data is performed to determine the subsurface absorption of this area. Then wave propagation and absorption rule are in control. Field acquisition design can be directed. And at the same time, with the optimization of source system, the performance of high resolution seismic acquisition layout system is enhanced. So the firm foundation is ensured for east sea gas reservoir exploration. For solving the multiple and amplitude preserving problems during the seismic data processing, wave equation pre-stack amplitude preservation migration and wave equation feedback iteratively multiple attenuation technologies are developed. Amplitude preservation migration technology can preserve the amplitude of imaging condition and wave-field extrapolation. Multiple removing technology is independent of seismic source wavelet and velocity model, which avoiding the weakness of Delft method. Aiming at the complicated formation condition of the gas reservoir in this area, with dissecting typical hydrocarbon reservoir, a series of pertinent advanced gas reservoir seismic identification technologies such as petrophysical properties analyzing and seismic modeling technology、pre-stack/post-stack joint elastic inversion, attribute extraction technology based on seismic non-stationary signal theory and formation absorption characteristic and so on are studied and developed. Integrated analysis of pre-stack/post-stack seismic data, reservoir information, rock physics and attribute information is performed. And finally, a suit of gas reservoir identification technology is built, according to the geological and geophysical characteristics of this area. With developed innovative technologies, practical application and intergrated interpretation appraisal researches are carried out in Lishui 36-1.The validity of these technologies is tested and verified. Also the hydrocarbon charging possibility and position of those three east sea gas exploration targets are clearly pointed out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In China and world, more than half the recent basin discovered reserves involve lithologic hydrocarbon reservoir reserves. The major target for further hydrocarbon basin exploration is the subtle reservoir. The Liaodong Bay prospect is much important in Bohai Sea, which includes Liaoxi low uplift, Liaodong uplift, Liaoxi sag and Liaozhong sag. After dozens years’ exploration in Liaodong Bay, few unexplored big-and-middle-sized favorable structural traps are remained and most of the stock structure targets are bad for fragmentary. Thus seeking for new prospect area and making a breakthrough, have become the unique way to relieve the severe exploration condition in Liaodong Bay. Technique Route Based on the petrophysical property of target area, the seismic forward inference of typical subtle trap model is expanded with analysis of logging, seismic and geologic data. According to petrophysical characteristics and forward inference and research on seismic response of actual seismic data in target area, the optimization of geophysical technique is used in subtle trap identification and the geophysical identification technique system of subtle reservoir is formed. The Key Research ① Petrophysical Model The petrophysical parameter is the basic parameter for seismic wave simulation. The seismic response difference of rocks bearing different fluids is required. With the crossplot of log data, the influence of petrophysical parameters on rock elastic properties of target area is analyzed, such as porosity, shale index, fluid property and saturation. Based on the current research on Biot-Gassmann and Kuster-Toksoz model, the petrophysical parameter calculator program which can be used for fluid substitution is established. ② S-wave evaluation based on conventional log data The shear velocity is needed during forward inference of AVO or other elastic wave field. But most of the recent conventional log data is lack of shear wave. Thus according to the research on petrophysical model, the rock S-wave parameter can be evaluated from conventional log data with probability inverse method. ③ AVO forward modeling based on well data For 6 wells in JZ31-6 block and 9 wells in LD22-1 block, the AVO forward modeling recording is made by log curve. The classification of AVO characteristics in objective interval is made by the lithologic information. ④ The 2D parameter model building and forward modeling of subtle hydrocarbon trap in target area. According to the formation interpretation of ESS03D seismic area, the 2D parameter model building and seismic wave field forward modeling are carried on the given and predicted subtle hydrocarbon trap with log curve. ⑤ The lithology and fluid identification of subtle trap in target area After study the seismic response characteristics of lithology and fluid in given target area, the optimization of geophysical technique is used for lithology identification and fluid forecast. ⑥The geophysical identification technique system of subtle reservoir The Innovative Points of this Paper ① Based on laboratory measurement and petrophysical model theory, the rock S-wave parameter can be evaluated from conventional log data with probability inverse method. Then the fluid substitution method based on B-G and K-T theory is provided. ② The method and workflow for simulating seismic wave field property of subtle hydrocarbon trap are established based on the petrophysical model building and forward modeling of wave equation. ③ The description of subtle trap structural feature is launched. According to the different reflection of frequency wave field structural attribute, the fluid property of subtle trap can be identified by wave field attenuation attribute and absorption analysis. ④ It’s the first time to identify subtle trap by geophysical technique and provide exploration drilling well location. ⑤ The technique system of subtle reservoir geophysical identification is formed to provide available workflow and research ideas for other region of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to effectively identify and accurately evaluate low resistivity reservoir in Dongpu depression, using various logging data synthetically, geological and logging characteristics are summarized in term of different blocks on the basis of core analysis, cutting logging, oil testing and commissioning data. The formation mechanism of low resistivity reservoir is studied, and the main factors that cause low resistivity reservoir are discovered. The first factor is fine lithology, high shale content and hydrophilic rock. The second factor is high salinity formation water. The third factor is light oil, high gas quantity dissolved and large difference density of oil-water. The last factor is low amplitude structure of reservoir and low differential degree of oil-water. According to the characteristics of low resistivity reservoir, the method of compound lithology, the method of movable fluid, the method of phase permeability and the method of nuclear magnetic resonance logging are put forward. The compound lithology criterion of distinguishing hydrocarbon is founded in term of different blocks on the basis of electrical efficiency. The evaluation models of reservoir parameters are founded; whose core is oil saturation and phase permeability. In order to calculate oil saturation, the compound lithology model on the basis of electrical efficiency theory is chosen on condition that there is only the combination logging data of acoustic and induction; the W-S model is chosen on condition that there is all-around logging data. The calculational precision of oil saturation in low resistivity reservoir of work area is enhanced when the selection method is utilized. There are 1212 layers of reservoir newly added by the old well reexamination in the ten oil areas. The coincidence rate of logging interpretation reaches 83.2 percent according to the 74 well-times of oil testing or commissioning, which indicates that the distinguishing method and evaluation models of low resistivity reservoir above are feasible.By the reexamination, a ten million tons of proved reserves related to the low resistivity reservoir are newly added, consequently, the groundwork is established to increase reserve and production of old oilfields in the east of China and new livingness is added for the petroleum exploration and development in Dongpu depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changling fault depression is the biggest fault subsidence in south of Songliao Basin. In its Lower Cretaceous Yingcheng and Shahezi formations developed thick source rocks of deep lake facies and developed poly-phase volcanic rock reservoirs as well. In recent years, significant breakthroughs have been obtained in hydrocarbon exploration of volcanic rock reservoir in the different fault depressions in Songliao basin. Lately, I have been involved in hydrocarbon exploration in the Changling rift depression, especially volcanic rock reservoirs and exploration targets research, participating in the deployment of well Yaoshen 1 which gained over 40 × 104m3 natural gas flow. As quick changes of lithology and facies in Changling area in the south of Songliao basin, and the volcanic rock interludes distribution in continental clastic rock and shale in 3D space, so the identification of volcanic rock types and distribution become a difficult problem. Thus, based on the integrated research of the wild outcrop observation, gravity, magnetic and seismic data, geophysical logging, drilling and coring, laboratory test, this paper carried out the reservoir identification, description and prediction of volcanic rocks in Changling fault depression. In this area, this paper analyzed the volcanic rocks litho-facies, the eruption period, and characteristics of cycles. At the same time, tried to know how to use logging, seismic data to separate volcanic rocks from sandstone and shale, distinguish between volcanic reservoir and non-reservoir, distinguish between intermediate-basic and acidic volcanic rocks, and how to identify traps of volcanic rocks and its gas-bearing properties, etc. Also it is summarized forming conditions and distribution of traps, and possible gas-bearing traps were optimized queuing management. Conclusions as follows: There are two faulted basements in Changling fault depression, granite basement in the southeast and upper paleozoic epimetamorphic basement in the northwest. The main volcanic reservoirs developed in Yingcheng period, which was the intermediate-basic and acidic volcanic eruptions, from the south to north by the intermediate-basic to acid conversion. The volcanic vents are gradually young from south to north. According to information of the re-processing 3D seismic data and gravity-magnetic data, the large volcanic vent or conduit was mainly beaded-distributed along the main fault. The volcanic rocks thickness in Yingcheng formation was changed by the deep faults and basement boundary line. Compared with the clastic rocks, volcanic rocks in Changling area are with high resistance and velocity (4900-5800), abnormal Gamma. All kinds of volcanic rocks are with abnormal strong amplitude reflection on the seismic stacked section except tuff. By analyzing the seismic facies characteristics of volcanic rocks, optimizing seismic attributes constrained by logging, using seismic amplitude and waveforms and other attributes divided volcanic rocks of Yingcheng formation into four seismic zones in map. Currently, most volcanic gas reservoirs are fault-anticline and fault-nose structure. But the volcanic dome lithologic gas reservoirs with large quantity and size are the main gas reservoir types to be found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandstone-type uranium deposits are frequently found close to oil fields or uraniferous sandstones contain bitumen or petroleum. However, few evidence has been presented to indicate the association of uranium mineralization with petroleum oxidation. Thus, Dongsheng uranium deposit in Ordos Basin and Qianjiadian deposit in Kailu Basin are taken for examples to solve the puzzle. Integration data from sedimentary petrology, mineralogy, race elements geochemistry, isotope geochemistry and organic geochemistry, the uranium and petroleum sources, and diagenetic paragenesis of the host sandstone are analyzed, and then the genetic relationship between microbes, petroleum and uranium deposits are discussed. The observation under microscope shows that the host sandstone samples from Middle Jurassic Zhiluo Formation in the Dongsheng deposit contained different kinds of metamorphic rock fragments, which should have been derived form outcrops north to this basin. The LREE/HREE ratios of gneiss and amphibolite sampled from outcrops were close to the highest and the lowest LREE/HREE ratios of the sandstones with well-compared chondrite-normalized REE patterns, respectively. So these results consistently indicated that parent rocks of sandstones were mainly contributed from these two kinds of metamorphic rocks. There was very high Th/U ratio for granite gneiss, which was a mainly potential U resource. Hydrocarbon inclusions and adsorbed hydrocarbons are observed under fluorescence microscope in the host sandstone of Dongsheng uranium deposit, suggesting that the sandstones may have been utilized as oil migration pathways. Based on biomarker parameters, it is indicated that the inclusion oils and adsorbed hydrocarbons were marginally mature to mature, and were derived from humic-sapropel type organic matter under poor reducing freshwater to semi-saline environment. The features are similar to those of organic matter extracted from Triassic sandstone and source rock, but are different from that of cretaceous sandstone. Thus, it can be concluded that the inclusion oils and adsorbed hydrocarbons were mainly derived from Triassic lacustrine facies source rock. Observation results under Scanning Electron Microscopy and Electron Microprobe with Energy Spectrum Analysis show that, in Dongsheng area, the main uranium ore mineral is coffinite. The coffinite is intimately intergrown or coexists with pyrite and calcite, thus, the solution during mineralization stage is inferred to be alkaline. The alkaline environment is not favored for uranium to be pre-concentrated by absorption, and then be reduced abiogenetically. δ34S of pyrite and δ13C of calcite indicate that pyrite was formed by bacterial sulfate reduction (BSR) and part of the carbon of calcite has been dirived from oxidation of petroleum, respectively. Additionally, petroleum is found biodegraded. All the lines of evidence consistently indicate that petroleum was involved in uranium mineralization. Coffinite with microbe-like structures is found in the high U sandstone samples and is composed of nanoparticles, indicating the coffinite is biogenic. The conclusion are also supportted by laboratory experiment studies, which have shown that SRB are capable of utilizing U(VI) as the preferred electron acceptor for respiration and reduce U(VI) to U(IV) directly, coupled the oxidaton of organic matter and sulfate reduction. Based on the research results mentioned above, in the Dongsheng area, coffinite is likely to have formed by mixing of brine containing petroleum derived from Triassic with uranium-bearing meteoric water from outcrops north to Ordos Basin. SRB utilize hydrocarbon as carbon source, and directly reduce U(VI) resulting in precipitation of coffinite. The product of metabolism, H2S and CO2, was precipitated as pyrite and calcite during mineralization stage. Petroleum in fluid inclusions and adsorbed type in host sandstone from Lower Cretaceous Yaojia Formation in Qianjiadian uranium deposit, Kailu Basin, are derived from Jurassic Jiufotang Formation in this basin and the uranium mineral consists mainly of pitchblende. The δ34S and δ13C values of pyrite and calcite during mineralization stage indicate SRB have likely degraded petroleum, which is similar to that of Dongsheng deposit. The alkaline environment as indicated by the diagenetic mineral assemblage calcite, Fe dolomite, pyrite and pitchblende deposit suggests that U ore in the Qiangjiajiadian has a similar origin, i.e., direct reduction by SRB. However, less part of pitchblende is intergrown with kaolinite, suggesting the solution during mineralization stage is acidic. The environment is favorable for U(VI) to be adsorded on quartz or other mineral, and then reduced by H2S produced by SRB. Thus, it can be concluded that U(VI) reduction with petroleum oxidation by SRB and other microbes is an important ore-forming mechanism in petroleum-related sandstone-type uranium deposits. The finding is significant in that it provides a theoretical basis for exploration of both uranium and petroleumr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of oil and gas migration and accumulation have been investigated for many years in petroleum geology field. However, it is still the most weak link. It is a challenge task to research the question about the dynamics of hydrocarbon migration and accumulation. The research area of this article,Chengbei step-fault zone is the important exploration area of Dagang oil field.The oil distribution is complicated in this area because of abundant faults and rock-reservoir-cap assemblage.In recent years, oil shows is often discovered, but no large-scale pool is found. The most important problem influencing exolore decision is lake of kowning about accumulation process of oil and resources potential. According to the geology characteristic and exolore difficult, the analysis principles of dynamics is used in this paper. The course from source to reservoir is considered as main research line, and relation of valid source rcok, migration dynamic and heterogeneous distribution of carrier is discussed especially in key time. By use of numerial model the couling of migration and passage is realized and dynamic process of oil migration is analysed quantitatively. On the basis of other research about structure and sendiment, basin model is built and parameters are choiced. The author has reconstructed characteristic and distribution of fluid dynamical in main pool-forming time by numerical model. The systems of oil migration and acuumulaiton are divided according to distribution of fluid potential. Furthermore, the scope of valid sourece rock and scale of discharging hydrocarbon is studied in geology history by the method of producting hydrocarbon poential. In carrier research, it is outstanding to analyse the function that fault controls the oil-gas migration and accumulation. According to the mechanism of fault sealing, the paper author puts forward a new quantitative method evaluating fault opening and sealing properties-fault connective probability by using the oil and gas shows in footwall and hangwall reservoir as the index of identifying fault sealing or non-sealing. In this method, many influencing factors are considered synthetically. Then the faut sealing propery of different position in third deimention of faults controlling hydrocarbon acummulation are quantitative evaluated, and it laies a foundation for building compex carrier systems. Ten models of carrier and dynamical are establishe by analysis of matching relation of all kinds of carriers in main pool-forming period. The forming process and distribution of main pathway has been studied quantitatively by Buoyancy-Percolation mode, which can conbine valid source rock, migration dynamical and carrier. On the basis of oil-gas migration and accumulation model, the author computes the loss of hydrocarbon in secondary migration, ahead of cap formation, and the quantity of valueless accumulation according to the stage of migration and accumulation and the losing mechamism. At the same time, resource potential is evaluated in every migration and accumulation system. It shows that the quanlity of middle systems arrive to 5.67×108t, which has a huge explore potential prospect. Finally, according to the result of quantitve analysis above mentioned, the favorable explore aims are forcasted by the way of overlapping migration pathway and valid trap and considering factors of pool-forming. The drilling of actual wells proved that the study result is credible. It would offer strong support to optimize explore project in Chengbei step-fault zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-pore-throat, micro-fracture and low permeability are the most obvious characters of Xifeng ultra-low permeability reservoir, and threshold pressure gradient and medium deformation during the period of oilfield developing results non-linear seepage feature of the formation liquid flowing in the porous medium underground. It is impossible to solve some problems in the ultra-low permeability reservoir development by current Darcy filtration theory and development techniques. In the view of the characters of ultra-low permeability and powerful-diagenesis and fracture up-growth, the paper quantitatively characterizes of through-going scope for reservoir parameters together with some materials such as similarity field outcrop, rock core, drilling, well logging and production dynamic, which provides geological base for further development adjustment. Based on the displacement experiment of different kinds of seepage fluid and oil-water two phases, this paper proves the relationship between threshold pressure gradient and formation permeability in experiment and theory, which is power function and its index is about -1. The variation rule and the mechanism of oil-water two phases threshold pressure gradient are studied. At the same time, based on the experiment of medium deformation, the variation rule of formation physical property parameters and the deformation mechanism are researched, and the influential factors on the medium deformation are analyzed systematically. With elastic unsteady filtration theory, nonlinear mathematical models of the steady and unsteady flow of single phase as well as horizontal well flow and oil-water two phases flow are deduced with the influence of nonlinear factors including threshold pressure gradient and media deformation. The influences of nonlinear factors upon well deliverability and reservoir pressure distribution as well as the saturation variation pattern of oil-water front are analyzed. By means of the researches such as reasonable well pattern, reasonable well array ration, artificial fracture length optimization advisable water flood timing and feasibility of advanced water flooding, it is necessary to find out effective techniques in order to improve development result of this kind of reservoir. This research result develops and improves on low-velocity nonlinear seepage theory, and offers ways to study similar kind of reservoir; it is meaningful to the development of the ultra-low permeability oil and gas reservoir.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study and Application of Damage Mechanism and Protection Method of reservoir in Nanpu Shallow Beach Sea Area is one of the key research projects of Jidong Oilfield Company of PetroChina Company Limited from 2007 to 2008. Located at Nanpu Sag in Huanghua Depression of Bohaiwan Basin, Nanpu Shallow Beach Sea Area with 1000km2 exploration area posseses three sets, shallow Minghuazhen Formation and Guantao Formation of Upper Tertiary, middle-deep Dongying Formation of Lower Tertiary, deep Ordovician, of oil bearing series, according to the achievement of the connecting 3D seismic structure interpretation and the structural geological comprehensive research. Its main reservoir types include Upper Tertiary structural reservoir, Lower Tertiary structural and lithological-structural reservoir, and Ordovician ancient buried hill reservoir. How to protect reservoir, complete well and lift high efficiently is the key to realize high and stable yield of the oil wells during drilling, completing well, testing and repairing well. It is important for reservoir protecting during drilling that directly relate to efficient exploration. Therefore, beginning with basic characteristics and sensitive analysis of reservoir, study of reservoir damage machinism and analysis of reservoir damage potential factor are emphasized when prediction analysis about three-pressure profiles is carried out. The study both of physical and chemical properties and of the strata of the technology of borehole stabilization and reservoir protecting are outstanding. As the conclusions follow: (1)Based on the laboratory experiment about basalt cores, prediction of three- pressure profiles about 30 wells on No.1 and No.2 structure is practiced. The laws of plane pressure distribution are analyzed. (2)According to the analyses about reservoir feature data and about sensitivity evaluation to damage factor in Nanpu oil field, the scheme of reservoir protecting to the sand reservoir of Guantao Formation and the first section of Dongying Formation is put forward. (3)On basis of the analyses on lithological characteristics, mineral compositions, clay minerals, electrical behavior features, physical and chemical properties of basalt of Guantao formation in No.1 and No.2 structure, instability mechanism of basalt sidewall and technical countermeasures are obtained. (4)Aiming at the characteristics of Ordovician dissolution-pore fracture type carbonate reservoir, the scheme of the reservoir protecting to Ordovician is put forward. Creative study of the film forming and sealing and low invasion reservoir protection drilling fluid are successful. In summary, through the study of reservoir heterogeneity and sensitivity, a set of technology and schemes of reservoir protecting is put forward, which is adaptive during drilling the target bed in the research area and establishes the base for efficient exploration. Significant effect has showed in its application in Nanpu oil field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The disequilibrium between supply and demand the east part of North China accelerated natural gas exploration in Bohai bay basin. Exploration practice showed that coal-derived gas is important resource. In searching of big to middle scaled coal derived gas field, and realize successive gas supply, the paper carried out integrated study on structural evolution of Pre-Tertiary and evaluation of reservoir forming condition of coal-derived gas. Study work of the paper was based on the following condition: available achievement in this field at present, good understanding of multiphase of tectonic movement. Study work was focused on geological evolution, source rock evaluation and dissection key factors controlling reservoir forming. Based on analysis of seismic data, drilling data, tectonic style of Pre-Tertiary was subdivided, with different tectonic style representing different tectonic process. By means of state of the art, such as analysis of balanced cross section, and erosion restoration, the paper reestablished tectonic history and analyzed basin property during different tectonic phase. Dynamic mechanism for tectonic movement and influence of tectonic evolution on tectonic style were discussed. Study made it clear that tectonic movement is intensive since Mesozoic including 2 phase of compressional movement (at the end of Indo-China movement, and Yanshan movement), 2 phase of extensional movement (middle Yanshan movement, and Himalayan movement), 2 phase of strike slip movement, as well as 2 phase of reversal movement (early Yanshan movement, and early Himalayan movement). As a result, three tectonic provinces with different remnant of strata and different tectonic style took shape. Based on afore mentioned study, the paper pointed out that evolution of Bohai bay basin experienced the following steps: basin of rift valley type (Pt2+3)-craton basin at passive continental margin (∈1-2)-craton basin at active continental margin (∈3- O)-convergent craton basin (C-T1+2)-intracontinental basin (J+K). Superposition of basins in different stage was discussed. Aimed at tectonic feature of multiple phases, the paper put forward concept model of superposition of tectonic unit, and analyzed its significance on reservoir forming. On basis of the difference among 3 tectonic movements in Mesozoic and Cenozoic, superposition of tectonic unit was classified into the following 3 categories and 6 types: continuous subsidence type (I), subsidence in Mesozoic and uplift for erosion in Cenozoic (II1), repeated subsidence and uplift in Mesozoic and subsidence in Cenozoic (II2), repeated subsidence and uplift in Mesozoic and uplift for erosion in Cenozoic (II3), uplift for erosion in Mesozoic and subsidence in Cenozoic (II4), and continuous uplift (III). Take the organic facies analysis as link, the paper established relationship between sedimentary environment and organic facies, as well as organic facies and organic matter abundance. Combined information of sedimentary environment and logging data, the paper estimated distribution of organic matter abundance. Combined with simulation of secondary hydrocarbon generation, dynamic mechanism of hydrocarbon generation, and thermal history, the paper made static and dynamic evaluation of effective source rock, i.e. Taiyuan formation and Shanxi formation. It is also pointed out that superposition of tectonic unit of type II2, type II4, and type I were the most favorable hydrocarbon generation units. Based on dissection of typical primary coal-derived gas reservoir, including reservoir forming condition and reservoir forming process, the paper pointed out key factors controlling reservoir forming for Carboniferous and Permian System: a. remnant thickness and source rock property were precondition; b. secondary hydrocarbon generation during Himalayan period was key factor; c. tectonic evolution history controlling thermal evolution of source rock was main factor that determine reservoir forming; d. inherited positive structural unit was favorable accumulation direction; e. fault activity and regional caprock determined hydrocarbon accumulation horizon. In the end, the paper established reservoir forming model for different superposition of tectonic units, and pointed out promising exploration belts with 11 of the first class, 5 of the second class and 6 of the third class.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maichen Depression lie between Leizhou Peninsula and Qiongzhou Strait. Oil and gas have been discovered in Weixinan Depression, Wushi Depression and Fushan Depression, which pertain to a same basin — North Sea Basin along with Maichen Depression.Jiangsu Oil started exploration at 2002. The first well began to drill at November, 2004 after gravity survey, electric method prospecting and 2D seismic exploration had been finished. Generating rock and hydrocarbon shows have been verified by the drilling. Low yield oil stream has been tested. And we started 3D seismic exploration at November, 2005. My thesis topic came from the actual needs of our exploration in the Maichen Depression. In the thesis, I give emphasis to analyse the own seismic geologic conditions of Maichen Depression. By real tests, we choosed the means to overcome or weaken the unfavorably impress owing to the own coditions in Maichen Depression. Finally, we obtained the usable seismic data. 1. Owing to the multiphase eruptive rock during the Quaternary Period, the near surface layers are very inhomogeneous. By simultaneous testing at same point with short refraction, uphole surveys of radial source and of surface source, the most appropriate method had been sorted out. Radial source uphole survey has been regarding the best practicable means in the complex area. Accurate surficial geology was very helpful to choosing of acquirement means and parameters. Basically the appropriate method of seismic acquirement has been built at Maichen area. 2. The seismic primary data has many, very strong and complex noise. By noise characteristic analysis in different domain, many means of denoising had been paralleled individual and joint application researched. As a result, the pre-stack multidomain joint denoise flow was the appropriate method. It can improve the seismic signal-to-noise ratio. 3. The problem of seismic static correction at Maichen Depression is very conspicuous. Many static correction methods had been tested individual and joint researched. The seismic data quality has been improved after choosing the appropriate combination of static correction flows. 4. Although the above-mentioned process are resultful, the seismic profile quality is just passable. Some reflector continuity and fault zone imagery are ambiguity. So it was the useful method to reduce the structural ambiguity during seismic interpretation that built-up geologic model in accord with real geologic character by areal structure study upon backbone seismic profiles. In the same way, traps have been assessed and drill targets have been selected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In research field of oil geophysical prospecting, reservoir prediction is refers to forecasting physical properties of petroleum reservoir by using data of seismic and well logging, it is a research which can guide oil field development. Singularities of seismic and logging data are caused by the heterogeneity of reservoir physical property. It's one of important methods that using singularity characteristics of seismic and logging data to study the reservoir physical property in recently. Among them, realization of reservoir quantitative prediction by analyzing singularity of the data and enhancing transition description of data is difficulty in method research. Based on wavelet transform and the fractal theory, the paper studied the singularity judgment criterion for seismic and logging data, not only analyzed quantitative relation between singularity data and reservoir physical property, but also applied it in practical reservoir prediction. The main achievements are: 1. A new method which provides singular points and their strength information estimation at only one single scale is proposed by Herrmann (1999). Based on that, the dissertation proposed modified algorithm which realized singularity polarity detection. 2. The dissertation introduced onset function to generalize the traditional geologic boundaries variations model which used singularity characteristics to represent the abruptness of the lithologic velocity transition. We show that singularity analysis reveals generic singularity information conducted from velocity or acoustic impedance to seismogram based on the convolution seismic-model theory. Theory and applications indicated that singularity information calculated from seismic data was a natural attribute for delineating stratigraphy boundaries due to its excellent ability in detecting detailed geologic features. We demonstrated that singularity analysis was a powerful tool to delineate stratigraphy boundaries and inverse acoustic impedance and velocity. 3. The geologic significances of logging data singularity information were also presented. According to our analysis, the positions of singularities indicate the sequence stratigraphic boundary, and there is subtle relationship between the singularity strength and sedimentary environment, meanwhile the singularity polarity used to recognize stratigraphic base-level cycle. Based on all those above, a new method which provided sedimentary cycle analysis based on the singularity information of logging data in multiple scales was proposed in this dissertation. This method provided a quantitative tool for judging interface of stratum sequence and achieved good results in the actual application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The faulted slope zone of Biyang depression, a multiple hydrocarbon accumulation zone lying in a rich oil depression of Nanxiang basin, is a structural-sedimentary compounded slope, which is developed in Yanshanian period and has an area of 500 km2. From the ‘bottom up’, the developed strata may be divided into Yuhuangding formation in Neogene, Dacang Fang, Hetao-yuan plus Liaozhuang formations and Fenghuangzheng plus Pingyuan formation in Neogene, while Hetao-yuan formation is the main hydrocarbon-bearing target. Because of transtensional stress fields formed by persistent action of large-scale faulting in the south of the depression, sedimentary differential compaction in different stages, and tectonic inversion in later developing stage of the depression, a series of nose structure zones cut by different strike faults are developed. Therefore, the reservoir migration and accumulation are controlled by the complex faulted-nose structural zone, reservoir types are dominated by faulted-noses, faulted-blocks and fault-lithology, while lithology and stratigraphic unconformable reservoirs are locally developed. In combination with demands of practical production, applying with a new research approach of systematology and a combination with dynamic and static modes, guided by modern petroleum geologic theory, and based on previous data and studies, new techniques, methods of geophysical exploration, various computer simulation and forecasting techniques are applied in the new research of this paper. Starting from the structural features and formation mechanism, the forming mechanism of faulted structure, conditions and controlling factors of hydrocarbon accumulation, as well as various space-time allocation relationships in the process of accumulation are analyzed in the research. Besides that, the hydrocarbon migration, accumulation mechanism and dynamic evolution process are also discussed in the paper. Through the research, the accumulation rule of the faulted slope zone in faulted lake basin, the distribution and enrichment regularity of different reservoir controlling factors are systematically summarized. The summarizations indicate that the faulted slope is a favorable orientational zone, hydrocarbon is accumulated in nose structures and enriched in the main body of nose structures, faulted transformation zone and the ascent direction of laddering faulted blocks, the faults are the controlling factors, hydrocarbon accumulation zones controlled by fault-lithology are distributed along the faulting direcion. In the end, hydrocarbon migration and accumulation models of complex faulted-nose blocks are established. 1) Down cut model—‘flank-sheet’: the hydrocarbon is migrated like ‘sheet’ along a series of faults with parallel distribution and accumulated in the flank of nose structures; 2)Cross cut --‘axis-string’ model: the hydrocarbon cutting across the faults is migrated like ‘string’ and accumulated in the axis of nose structures. In view of different distribution models, reservoir forming combination patterns are divided and hydrocarbon reservoir evaluation exploration is carried out, which achieves good results in application. Key words: faulted slope zone; migration and accumulation model; reservoir controlling mechanism; reservoir-forming combination

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shijiawan –Lijiacha area, lying on the northeastern part of the Shanbei Slope of Ordos Basin, was selected as studying area. The previous explorations proved that the 2nd segment and 6th segment of the Yanchang Formation are the most important oil-bearing formations. It is indicated that the sedimentary facies and reservoir characteristics restricted the hydrocarbon accumulation regularity. Therefore, with petrology methodologies, such as outcrop observation, core description, geophysical logging interpretation, thin section determination, scanning electron microscope, as well as rock property analysis, the reservoirs was were systematically studied and characterized. The sedimentary micro-facies, seals, reservoir-seal combines, migration pathways and entrapping modes were taken into account. The author tempted to establish a base for further studies on reservoirs and on petroleum geology, and to provide some reliably geological evidences for later prospect activities. It was found that the sediments in the 2nd and 3rd segments of the Yanchang Formation in Shijiawan –Lijiacha area were deposited in braided rivers, and most sandy-bodies were identified as channel sandbars. The 4+5th and 6th segments were principally deposited in deltaic-plain environment, consisting of corresponding sub-facies such as distributary channels, natural levee, crevasse-splay and marsh. The skeleton sandy-bodies were identified as sandy sediments of distributary channels. The sand grains in reservoir in studied area possess generally low mineralogical maturity and moderate structural maturity, and the form of pores may be classified into intergranular types and dissolved types. Most reservoirs of Yanchang Formation in Shijiawan –Lijiacha area belong to extreme low-porosity low-permeability ones (type III), and the 2nd sediments belongs to low permeability one (type II) and the 6th segment belong to super low-permeability one(type Ⅳ). The reservoirs in the 2nd segment behave more heterogeneous than those in the 6th segment. The statistic analysis results show that, for 6th and 4+5th segments, the high quality reservoir-seal combines may be found everywhere in the studied area except in the northwest and the southwest parts; and for 1st and 2nd segments, in the northeast, central and southwest parts Petroleum migration happened in the duration of the Early Cretaceous period in both lateral and vertical directions. The migration paths were mainly constructed by permeable sandy-bodies. The superimposed channel sandy-bodies consist of the principal part of the system of carriers. the vertical fractures, that may travel through the seals between reservoirs, offered the vertical paths for migrating oil. It may be synthesized that oil coming from south kitchens migrated first laterally in carriers in the 6th segment. When arrived at the studied area, oil will migration laterally or/and vertical within both the sandy-bodies and fractures, in a climbing-stair way. The results demonstrate that the oil was entrapped in traps structure-lithology and/or lithology traps. In some cases, the hydrodynamic force may help to trap oil. Accumulation of oil in the area was mainly controlled by sedimentary facies, seals, structure, and heterogeneity of reservoir in the 2nd, 4+5th and 6th segments. Especially, the oil distributions in both the 2nd and 6th segments were obviously influenced by seals in the 4+5th segment. The existence of seals in 1st segment seems important for accumulation in the 2nd segment.