459 resultados para catalytic hydrogenation
Resumo:
Electrochemical catalytic reactions of tetraphenylporphinatocobalt were studied in DMF and EtCl2 solutions in the presence of 1,2-dibromoethane and 1, 2-dichloroethane utilizing cyclic voltammetry, thin-layer electrochemistry, in situ UV-visible spectroel
Resumo:
A new type of macro-micro-macro triple electrode has been fabricated, the steady-state currents of solution redox species have been observed at an ultramicroband electrode by linear potential scan voltammetry, and generation/collection experiments have al
Resumo:
It was discovered experimentally that heteropolymolybdophosphoric acids (HPA) with Keggin and Dawson structure are inactive for H2O2-decomposition, while their salts (Fe3+, Cu2+, Co2+ and Mn2+) all possess more activity. It could be concluded that the act
Resumo:
The catalytic activity of heteropoly compounds in the oxidation of benzyl alcohol and cyclohexa nol under phase transfer conditions has been studied. The catalytic activity of six kinds of heteropoly acids with Keggin structure will drop by the order of GeMo12 (H4GeMo12O40). PW12, PMo12, SiMo12, GeW12 and SiW12. When the three protons of H3PW12O40 Were replaced by Na+ step by step, the catalytic activity will raise gradually with the drop of acidity. The addition of base and trace amount of sulfuric acid to the reaction system resulted in an increase of catalytic activity. It was found that catalytic activity of mono-lacunary heteropoly compounds is higher than that of the primary heteropoly acids (or salts). The catalytic oxidation system of HPA-H2O2-PTC is very active in the oxidation of benzyl alcohol ana cyclohexanol, but it has little activity in the oxidation of inactive compounds such as n(or iso)-proplalcohol. n-butyl alcohol and n-hexanol. Solvent has great effect on reaction, when polar compounds such as water were used as solvent, the catalytic activity is better than that when non-polar compounds were used as solvent.
Resumo:
The type of oxygen species in perovskite-type oxides LaMnyCo1-yO3 (y = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) has been studied by means of XRD, XPS and TPD. The catalytic activity in ammonia oxidation was also investigated. It was found that there were three desorption peaks in TPD curve corresponding to three types of oxygen species (alpha, beta, beta'). The desorption temperatures were 293 K less-than-or-equal-to T(alpha) less-than-or-equal-to 773 K, 773 K less-than-or-equal-to T(beta) less-than-or-equal-to K and T(beta') greater-than-or-equal-to 1073 K respectively. The relationship among the composition, structure and the catalytic property of.the catalyst was correlated and could be explainned with a model based on solid defect reaction and the interaction between Co and Mn ions. The adsorption strength and quantity of a oxygen are proportional to the catalytic activity. The, result indicates that the synergetic effect between B-site ions seems to the benefit of the ammonis oxidation reaction.
Resumo:
Electrodes modified with isopolymolybdic acid+polyaniline film, which exhibit high stability and activity in aqueous acidic solution, have been prepared successfully using two methods: one-step synthesis by electrochemical polymerization at a constant applied potential of +0.80 V/SCE or by cycling the potential at 100 mV/s between -0.12 and +0.85 V in 0.5 M H2SO4 containing 5.0x10(-2) M aniline and 5.0x10(-3) M H4Mo8O26, or two-step synthesis by doping the polyaniline film electrode with isopoly acid (IPA) under a cycling potential between -0.20 and +0.40 V in 0.5 M H2SO4 containing the H4Mo8O26 dopant. The thickness of the film and the amount of dopant in the polyaniline film can be controlled by experimental parameters such as the charge, time and the ratio of aniline to IPA in the solution. The experimental results show that electrodes modified with isopolymolybdic acid+polyaniline film using both methods have a strong catalytic effect on the reduction of chlorate anions. Comparison of the two methods of modification shows that the catalytic effect at the modified electrode prepared by the two-step method is greater than that at the electrode prepared by the one-step method.
Resumo:
A layer of palladium particles was electrodeposited on a glassy carbon electrode. The dispersed Pd particles resulted in a large decrease in overvoltage for the electrochemical oxidation of H2O2 down to +0.4 V vs. Ag/AgCl, based on which a new kind of cholesterol sensor was fabricated. Cholesterol oxidase was immobilized on the Pd-dispersed electrode by cross-linking with glutaraldehyde and a layer of poly(o-phenylenediamine) (PPD) film was electropolymerized on the enzyme layer. The sensor shows a linear response in the concentration range 0.05-4.50 mmol l-1 with a rapid response of less than 20 s. The polymer film can prevent interference from uric acid and ascorbic acid and also increases the thermal stability of the sensor. The sensor can be used for 200 assays without an obvious decrease in activity.
Resumo:
The electrocatalytic reduction of 1,2-dibromoethane and tetrabromoethane with CoTPP in DMF solutions containing 0.1 M TBAP was investigated at a Pt ultramicroelectrode. The experimental results indicated that CoTPP obviously exhibited catalytic activity for 1,2-dibromoethane and tetrabromoethane. The rate constants of 1,2-dibromoethane and tetrabromoethane in this system were calculated to be 0.14 x 10(3) and 0.5 x 10(2) M-1 S-1, respectively. The reaction mechanism of 1,2-dibromoethane and tetrabromoethane reduction electrocatalysed by CoTPP in 0.1 M TBAP DMF solution is discussed.
Resumo:
The complex of (CH3Cp)2Yb . DME (DME = dimethoxyethane) has been synthesized by the reduction with metallic sodium of the corresponding chloride (CH3CP)2YbCl. (CH3CP)2Yb . DME crystallized from DME in the monoclinic space group Cm, with cell constants a = 11.068(3), b = 12.338(4), c = 12.479(4) angstrom; beta = 100.51(2)-degrees, V = 1675(l) angstrom3, and D0 = 1.66 g/cm3 for Z = 4. Least-squares refinement of 1420 unique observed reflections led to final R of 0.0487. This complex can be used as a catalyst for the polymerization of methyl methacrylate (MMA).
Resumo:
Two series of La1-xSrxNiO3-lambda and La1-1.333xThxNiO3-lambda catalysts have been prepared, and the relationships between the solid defect structure and catalytic activity for NH3 oxidation were measured. The results showed that in the range of x < 0.3, the samples possessed single perovskite-type structure, and as the content of Sr2+ decreased and that of Th4+ increased the catalytic activity increased which was paralleled with the Ni3+ concentration within the catalysts. The active oxygen species (O- or O2(2-)) were present not only on the surface but also in the bulk of the samples. The synergistic effect of transition metal ions with higher oxidation states and randomly distributed oxygen vacancies was the key factor determining catalytic activity of perovskite-type oxides. A redox mechanism for NH3 oxidation over ABO3 is proposed.
Resumo:
The analytical expressions of quasi-first and second order homogeneous catalytic reactions with different diffusion coefficients at ultramicrodisk electrodes under steady state conditions are obtained by using the reaction layer concept. The method of treatment is simple and its physical meaning is clear. The relationship between the diffusion layer, reaction layer, the electrode dimension and the kinetic rate constant at an ultramicroelectrode is discussed and the factor effect on the reaction order is described. The order of a catalytic reaction at an ultramicroelectrode under steady state conditions is related not only to C(Z)*/C(O)* but also to the kinetic rate constant and the dimension of the ultramicroelectrode; thus the order of reaction can be controlled by the dimension of the ultramicroelectrode. The steady state voltammetry of the ultramicroelectrode is one of the most simple methods available to study the kinetics of fast catalytic reactions.
Resumo:
The conditions for quasi-first and second order homogeneous catalytic reactions and their variation with each other at an ultramicrodisk electrode in the steady state are discussed in this paper. The order of reaction can be controlled by changing the dimension of the ultramicroelectrode: the second order reaction can be changed to quasi-first by decreasing the dimension of the ultramicroelectrode. An example of this is given. The main factor effect on the reaction order is the dimension of the ultramicroelectrode. The K4Fe(CN)6-aminopyrine system is selected to confirm the theory, the experiments showing that the system is a second order reaction at a 432 mum microelectrode, and a quasi-first order reaction at a 19 mum ultramicroelectrode. The kinetic constant of the system can be determined by applying the previous theory of homogeneous catalytic reaction.
Resumo:
A rapid rotation-scan method was used for the electrocatalytic oxidation of H2O2 at a cobalt protoporphyrin modified pyrolytic graphite electrode (CoPP/PG). The rate constant of H2O2 oxidation at the CoPP/PG electrode at different potentials and in different pH solutions was measured. The variation of catalytic activity with reaction charges (Q) passed through the electrode was analyzed. This provided a convenient electrochemical method to study the passivation and poisoning of catalytic sites with time.
Resumo:
A general characteristic of the electrochemical process coupling with a homogeneous catalytic reaction at an ultramicroelectrode under steady state is described. It was found that the electrochemical process coupling with homogeneous catalytic reaction has a similar steady state voltammetric wave at an ultramicroelectrode with arbitrary geometry. A method of determination for the kinetic constant of homogeneous catalytic reaction at an ultramicroelectrode with arbitrary geometry is proposed.