425 resultados para adsorptive voltammetry
Resumo:
The electrocatalytic oxidation of methanol on polypyrrole (PPy) film modified with platinum microparticles has been studied by means of electrochemical and in situ Fourier transform infrared techniques. The Pt microparticles, which were incorporated in the PPy film by the technique of cyclic voltammetry, were uniformly dispersed. The modified electrode exhibits significant electrocatalytic activity for the oxidation of methanol. The catalytic activities were found to be dependent on Pt loading and the thickness of the PPy film. The linearly adsorbed CO species is the only intermediate of electrochemical oxidation of methanol and can be readily oxidized at the modified electrodes. The enhanced electrocatalytic activities may be due to the uniform dispersion of Pt microparticles in the PPy film and the synergistic effects of the highly dispersed Pt microparticles and the PPy film. Finally, a reaction mechanism is suggested.
Resumo:
Electrochemical reactions of cyanocobalamin, CN-Cbl[Co(III)], were studied at glassy carbon electrodes in acidic media by means of cyclic voltammetry and differential pulse polarography. It was found that in pH 0 solution, CN-Cbl[Co(III)] exists mainly in the base-off form, {CN-Cbl[Co(III)]}(base-off). It can undergo a one-electron reduction and a follow-up chemical reaction to form {H2O-Cbl[Co(II)]}(base-off). The rate-constant k of the follow-up decyanation reaction is 0.022 s(-1). {H2O-Cbl[Co(II)]}(base-off) is further reduced to obtain H2O-Cbl[Co(I)]. (C) 1997 Elsevier Science S.A.
Resumo:
The electrochemical behavior of Nd3+ and Ho3+ ions on molybdenum electrode in the LiCl-KCl eutectic melts has been studied by cyclic voltammetry and open-circuit potentiometry. The results show that the reduction process of Nd3+ and Ho3+ ions on molybdenum electrode is one-step three electron reversible reaction. The diffusion coefficients of Nd3+ and Ho3+ ions are 1.13 x 10(-6) cm(2).s(-1)(450 degrees C) and 2.142 x 10(-5) cm(2).s(-1)(450 degrees C), respectively. The measured standard electrode potential of Ho3+/Ho is 2.987 V(vs. Cl/Cl-), being more negative than the theoretical one, the reason of which is also discussed.
Resumo:
Chromatography-amperometric detection of nitrite with a polypyrrole modified glassy carbon electrode doped with tungstodiphosphate anion (Dawson-type P2W18O626-/PPy/GC electrode) based on its electrocatalytic reduction of nitrite is described. The cyclic and hydrodynamic voltammetry of nitrite at the P2W18O626-/PPy/GC electrode was studied. The factors affecting the detection of nitrite and the analytical performance of the modified electrode in flowing stream were investigated. The results show that the modified electrode has a good sensitivity (the limit of detection is 1 mu mol dm(-3)) and a satisfactory reproducibility (RSD = 3.78%, N = 21). The modified electrode was used in the chromatographic detection of nitrite spiked in the liquid from a tin of mushrooms and the mineralized spring water. It was found that the modified electrode exhibited good selectivity for nitrite.
Resumo:
The electrocatalytic oxidation of methanol on polythionine(PTn) film modified with Pt microparticles has been studied by means of cyclic voltammetry and in-situ FTIR spectroscopy. The Pt microparticles produced by cyclic voltammetry were highly dispersed in and on the PTn film. The modified electrodes exhibit significant electrocatalytic activity for the oxidation of methano and the catalytic activity was found in dependence on the Pt loading. The linearly adsorbed CO species is the only intermediate in the oxidation of methanol and the abnormal IR spectra for adsorbed CO were observed. On such modified electrodes, adsorbed CO species derived from methanol can be readily oxidized. The enhanced electrocatalytic activity may be ascribed to the high dispersion of Pt microparticles in and on the PTn film and the synergestic effect between Pt microparticles and the polymer. From the above results, a possible reaction mechanism was proposed.
Resumo:
The steady state voltammogram at a microdisk electrode is used to measure the diffusion coefficient and standard heterogeneous rate constant (k(s)) of ferrocene in polyelectrolyte PEG + LiClO4. The k(s) obtained is smaller in polyelectrolyte than in liquid medium. It is proposed that the polymer solvent electron transfer dynamics are affected by the relaxation rates of the ether dipole sites on the polymer chains, which are in turn constrained by the rates of polymer chain segment, or local structure, relaxations. The dependence of k(s) on temperature is observed. The k(s) increases with increasing temperature.
Resumo:
Iron(II)-8-quinolino/MCM-41 is prepared. Its catalysis is studied in phenol hydroxylation using H2O2 (30%) as oxidant. The experiment shows that Iron(II)-8-quinolinol/MCM-41 has good catalytic activity and desired stability. Based on cyclic voltammetry, ESR, and UV-visible spectra studies of iron(II)-8-quinolinol complex in liquid phase, a radical substitution mechanism is proposed and used to demonstrate the experimental facts clearly. (C) 1997 Academic Press.
Resumo:
A special electrodeposition process of palladium was studied by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and in situ scanning tunneling microscopy (STM). A kind of palladium(IV) complex was attached to the highly oriented pyrolytic graphite (HOPG) electrode surface by electro-oxidation of palladium(II) complex first, and was then reduced to palladium particles. The surface complexes and particles of palladium were both characterized by in situ STM and XPS. The Pd particles are in the nanometer range of size and exhibit electrocatalytic activity towards the oxidation of hydrazine and hydroxylamine.
Resumo:
The electrochemical behavior of the electroactive self-assembled monolayers (SAMs) of thiol-functionalized viologen, CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is a viologen group, on the gold electrodes is examined by cyclic voltammetry and electrochemical a.c. impedance. A monolayer of viologen is immobilized on the gold electrode surface via the Au-S bond and the normal potentials corresponding to the two successive one-electron transfer processes of the viologen active centers are -310 mV and -652 mV (vs. Ag/AgCl) in 0.1 mol l(-1) phosphate buffer solution (pH 6.96) respectively. These results suggest that the viologen SAMs are stable and well-behaved monolayers. The experimental impedance data corresponding to different forms of viologen group have been fitted to equivalent electrical circuits, and the surface capacitances and resistances have been given. The heterogenous electron transfer rates of the first and the second redox processes are 7.57 s(-1) and 1.49 s(-1) respectively through a.c. impedance.
Resumo:
Steady-state voltammograms at a microdisk electrode are used to measure the diffusion coefficient (D) and standard heterogeneous rate constant (k(s)) of ferrocene in polyelectrolyte PEG.MClO(4). The diffusion coefficient and standard heterogeneous rate constant of ferrocene are both smaller in polymer solvents than in monomeric solvents. The D and k(s) of ferrocene have been estimated in PEG containing different concentrations and cations of supporting electrolytes, and the dependencies of D and k(s) on temperature have been observed. These results show that the D and k(s) of ferrocene increase with increasing temperature in polyelectrolyte, and with increasing cation radius of supporting electrolyte, eg D and k(s) increase in the order Bu(4)NClO(4) > NaClO4 > LiClO4. On the other hand, D and k(s) increase with decreasing concentration of supporting electrolyte. The dependence of the half-wave potential (E(1/2)) on the concentration of the supporting electrolyte is also observed. E(1/2) shifts in the negative direction as the concentration of supporting electrolyte increases. (C) 1997 Elsevier Science Ltd.
Resumo:
The mass transport dynamics of Ferrocene in polyelectrolyte polyethylene glycol lithium perchlorate (PEG . LiClO4) was studied by using chronoamperometry at a microdisk electrode. Chronoamperometry is a powerful method for the study of mass transport in polyelectrolyte, it has many advantages over the conventional methods at a microelectrode and the steady-state method at an ultramicroelectrode. By using this method the apparent diffusion coefficient D-app and concentration C-a of the electroactive species, can be estimated from a single experiment without previous knowledge of either one. We have estimated D-app and C-a of ferrocene in PEG . LiClO4 polyelectrolyte from 25 degrees C to 75 degrees C. The dependence on the concentration of electroactive species was observed. The diffusion coefficients decrease with increasing ferrocene concentration and decreasing temperature. The mass transport mechanism is explained, by using a free volume model.
Resumo:
The spinel, lithium intercalation compound LiMn2O4 is prepared and studied using the techniques of a.c. impedance and cyclic voltammetry. The impedance behaviour of the LiMn2O4 electrode varies as lithium ions are intercalated or de-intercalated. The reversible behaviour of lithium ions in the LiMn2O4 electrode is confirmed by the results of cyclic voltammetry.
Resumo:
The gold electrodes coated by n-alkanethiol with various chain lengths were used to study the permeability of uric acid, ascorbic acid, 4-aminophenol, paracetanol and phenacetin by means of linear sweep voltammetry. The results show that the optimum chain length is n=10. The improvements in the selectivity and the stability of the amperometric detection of these compounds in a flow stream were obtained by n-alkanethiol self assembled monolayers modified electrodes based on their differences in the hydrophobicity and the permeability.
Resumo:
The monolayer of cytochrome c oxidase maintaining physiological activity and attached covalently to the self-assembled monolayers of 3-mercaptopropionic acid (MPA) on a gold electrode was obtained. The results of cyclic voltammetry show that direct electron transfer between cytochrome c oxidase and the electrode surface is a fast and diffusionless process. MPA has a dual role as both electrode modifier and the bridging molecule which: keeps cytochrome c oxidase at an appropriate orientation without denaturation and enables direct electron transfer between the protein and the modified electrode. Immobilized cytochrome c oxidase exhibits biphasic phenomena between the concentration of the electrolyte and the normal potentials; meanwhile its electrochemical behavior is also influenced by the buffer components. The quasi-reversible electron transfer process of cytochrome c oxidase with formal potential 385 mV vs. SHE in 5mM phosphate buffer solution (pH 6.4) corresponds to the redox reaction of cyt a(3) in cytochrome c oxidase, and the heterogeneous electron transfer rate constant obtained is 1.56 s(-1). By cyclic voltammetry measurements, it was observed that oxidation and reduction of cytochrome c in solution were catalyzed by the immobilized cytochrome c oxidase. This cytochrome c oxidase/MPA/Au system provides a good mimetic model to study the physiological functions of membrane-associated enzymes and hopefully to build a third-generation biosensor without using a mediator.
Resumo:
Supported lipid membranes consisting of self-assembled alkanethiol and lipid monolayers on gold substrates could be produced by three different deposition methods: the Langmuir-Blodgett (L-B) technique, the painted method, and the paint-freeze method, By using cyclic voltammetry, chronoamperometry/chronocoulometry and a.c. impedance measurements, we demonstrated that lipid membranes prepared by these three deposition methods had obvious differences in specific capacitance, resistance and thickness. The specific capacitance of lipid membranes prepared by depositing an L-B monolayer on the alkanethiol alkylated surfaces was 0.53 mu Fcm(-2), 0.44 mu Fcm(-2) by the painted method and 0.68 mu Fcm(-2) by the paint-freeze method. The specific conductivity of lipid membranes prepared by the L-B method was over three times lower than that of the painted lipid membranes, while that of the paint-freeze method was the lowest. The difference among the three types of lipid membranes was ascribed to the influence of the organic solvent in lipid films and the changes in density of the films. The lipid membranes prepared by the usual painted method contained a trace amount of the organic solvent. The organic solvent existing in the hydrocarbon core of the membrane reduced the density of the membrane and increased the thickness of the membrane. The membrane prepared by depositing an L-B monolayer containing no solvent had higher density and the lowest fluidity, and the thickness of the membrane was smaller. The lipid membrane prepared by the paint-freeze method changed its structure sharply at the lower temperature. The organic solvent was frozen out of the membrane while the density of the membrane increased greatly. All these caused the membrane to exist in a ''tilted'' state and the thickness of this membrane was the smallest. The lipid membrane produced by the paint-freeze method was a membrane not containing organic solvent. This method was easier in manipulation and had better reproducibility than that of the usual painting method and the method of forming free-standing lipid film. The solvent-free membrane had a long lifetime and a higher mechanical stability. This model membrane would be useful in many areas of scientific research.