394 resultados para Maillard Reaction
The ion-molecule reaction after multiphoton ionization in the binary cluster of ammonia and methanol
Resumo:
The binary cluster (CH3OH)(n)(NH3)(m) was studied by using a multiphoton ionization time-of-flight mass spectrometer (MPI-TOFMS). The measured two series of protonated cluster ions: (CH3OH)(n)H+ and (CH3OH)(n)NH4+ (1 less than or equal to n less than or equal to 14) were attributed to the ion-molecule reaction in the binary cluster ions. The mixed cluster of CH3OD with ammonia was also studied. The results implied that the proton transfer probability from the OD group was larger than that from CH3 group. The ab initio calculation of the binary cluster was carried out at the HF/STO-3G and MP2/6-31G** levels of theory, and indicated that the latter process of the proton transfer must overcome a barrier of similar to 29 kcal/mol. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Surface structures of Pt-Sn and Pt-Fe bimetallic catalysts have been investigated by means of Mossbauer spectroscopy, Pt-L-III -edge EXAFS and H-2-adsorption. The results showed that the second component, such as Sn or Fe, remained in the oxidative state and dispersed on the gamma-Al2O3 surface after reduction, while Pt was completely reduced to the metallic state and dispersed on either the metal oxide surface or the gamma-Al2O3 surface. By correlating the distribution of Pt species on different surfaces with the reaction and adsorption performances, it is proposed that two kinds of active Pt species existed on the surfaces of both catalysts, named M-1 sites and M-2 sites. M-1 sites are the sites in which Pr directly anchored on the gamma-Al2O3 surface, while M-2 sites are those in which Pt anchored on the metal oxide surface. M-1 sites are favorable for low temperature H-2 adsorption, and responsible for the hydrogenolysis reaction and carbon deposition, while M-2 sites which adsorb more H-2 at higher temperature, are more resistant to the deactivation due to less carbon deposition, and provide major contribution to the dehydrogenation reaction.