320 resultados para METHANE ACTIVATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single-pass process with the combination of oxidative coupling (OCM) and dehydro-aromatization (MDA) for the direct conversion of methane is carried out. With the assistance of the OCM reaction over the SrO-La2O3/CaO catalyst loaded on top of the catalyst bed, the duration of the dehydro-aromatization reaction catalyzed by a 6Mo/HMCM-49 catalyst shows a significant improvement, and. the initial deactivation rate constant of the overall process revealed about 1.5 x 10(-6) s(-1). Up to 72 h on stream, the yield of aromatics was still maintained at 5.0% with a methane conversion of 9.6%, which is obviously higher than that reported for the conventional MDA process with single catalyst. Upon the TPR results, this wonderful enhancement would be attributed to an in-situ formation of CO2 and H2O through the OCM reaction, which serves as a scavenger for actively removing the coke formed during the MDA reaction via a reverse Boudouard reaction and the water gas reaction as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic performances of methane dehydroaromatization (MDA) under non-oxidative conditions over 6 wt.% Mo/HZSM-5 catalysts calcined for different durations of time at 773 K have been investigated in combination with ex situ H-1 MAS NMR characterization. Prolongation of the calcination time at 773 K is in favor of the diffusion of the Mo species on the external surface and the migration of Mo species into the channels, resulting in a further decrease in the number of Bronsted acid sites, while causing only a slight change in the Mo contents of the bulk and in the framework structure of the HZSM-5 zeolite. The MoQ(x) species associated and non-associated with the Bronsted acid sites can be estimated quantitatively based on the 1H MAS NMR measurements as well as on the assumption of a stoichiometry ratio of 1: 1 between the Mo species and the Bronsted acid sites. Calcining the 6 wt.% Mo/HZSM-5 catalyst at 773 K for 18 h can cause the MoOx species to associate with the Bronsted acid sites, while a 6 Wt-% MO/SiO2 sample can be taken as a catalyst in which all MoOx species are non-associated with the Bronsted acid sites. The TOF data at different times on stream on the 6 wt.% Mo/HZSM-5 catalyst calcined at 773 K for 18 h and on the 6 Wt-% MO/SiO2 catalyst reveal that the MoCx species formed from MoOx associated with the Bronsted acid sites are more active and stable than those formed from MoOx non-associated with the Bronsted acid sites. An analysis of the TPO profiles recorded on the used 6 wt.% Mo/HZSM-5 catalysts calcined for different durations of time combined with the TGA measurements also reveals that the more of the MoCx species formed from MoOx species associated with the Br6nsted acid sites, the lower the amount of coke that will be deposited on it. The decrease of the coke amount is mainly due to a decrease in the coke burnt-off at high temperature. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The silver catalyzed, selective catalytic reduction (SCR) of nitrogen oxides (NOx) by CH4, is shown to be a structure-sensitive reaction. Pretreatment has a great affect on the catalytic performances. Upon thermal treatment in inert gas stream, thermal induced changes in silver morphology lead to the formation of reduced silver species of clusters and particles. Catalysis over this catalyst indicates an initially higher activity but lower selectivity for the CH4-SCR of NOx Reaction induced restructuring of silver results in the formation of ill-defined silver oxides. This, in turn, impacts the adsorption properties and diffusivity of oxygen over silver catalyst, results in the decrease in activity but increase in selectivity of Ag-H-ZSM-5 catalyst for the CH4-SCR of NO.. (c) 2004 Elsevier B.V. All rights reserved.