366 resultados para FOURIER TRANSFORM SPECTROMETERS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work is intended to provide a method for the preparation of maleic anhydride grafted syndiotactic polystyrene (sPS-g-MA). In particular, a novel solid reaction method by a radical grafting approach is investigated. The grafting reaction is performed at a solid state, where the syndiotactic polystyrene (sPS) is swollen in solvent at relatively low temperature compared to the conventional melt modification method. The formation of sPS-g-MA is directly confirmed by Fourier transform infrared spectroscopy and by the morphology observation of sPS/polyamide-6 (Nylon6) blends, when sPS-g-MA is used as a reactive compatibilizer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modification of high-impact polystyrene (HIPS) was accomplished by melt-grafting glycidyl methacrylate (GMA) on its molecular chains. Fourier transform infrared spectroscopy and electron spectroscopy for chemical analysis were used to characterize the formation of HIPS-g-GMA copolymers. The content of GMA in HIPS-g-GMA copolymer was determined by using the titration method. The effect of the concentrations of GMA and dicumyl peroxide on the degree of grafting was studied. A total of 1.9% of GMA can be grafted on HIPS. HIPS-g-GNU was used to prepare binary blends with poly(buthylene terephthalate) (PBT), and the evidence of reactions between the grafting copolymer and PBT in the blends was confirmed by scanning electron microscopy (SEM), dynamic mechanical analysis, and its mechanical properties. The SEM result showed that the domain size in PBT/HIPS-g-GMA blends was reduced significantly compared with that in PBT/HIPS blends; moreover, the improved strength was measured in PBT/HIPS-g-GMA blends and results from good interfacial adhesion. The reaction between ester groups of PBT and epoxy groups of HIPS-g-GMA can depress crystallinity and the crystal perfection of PBT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM) and optical microscopy, UV/vis transmission and absorption spectra, photoluminescence (PL) spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 400 degreesC and the crystallinity increased with the increase of annealing temperatures. Transparent nonpatterned phosphor films were uniform and crack-free, which mainly consisted of grains with an average size of 90 nm. Patterned gel and crystalline phosphor film bands with different widths (5-60 mum) were obtained. Significant shrinkage and a few defects were observed in the patterned films during the heat treatment process. The doped rare earth ions (A) showed their characteristic emission in crystalline YVO4 phosphor films because of an efficient energy transfer from vanadate groups to them. The Sm3+ and Er3+ ions also showed upconversion luminescence in a YVO4 film host. Both the lifetimes and PL intensity of the rare earth ions increased with increasing annealing temperature from 400 to 800 degreesC, and the optimum concentration for Eu3+ was determined to be 7 mol % and those for Dy3+, Sm3-, and Er3+ were 2 Mol % of Y3- in YVO4 films, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the structures and properties of the neutral and doped blends of poly(3-dodecylthiophene) (P3DDT) with low-density polyethylene (LDPE) were investigated. Wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), and scanning electron microscopy (SEM) were used to characterize the structures and morphologies of the blends, and conductivity was also measured. It was found that separate crystallizations occur between P3DDT and LDPE. When the amount of P3DDT is small in the blend, it has the effect of a nucleation reagent and has some influence on the crystal structure. After doping, the interaction force between the molecular chains increases, and leads to a more compact packing and a more uniform dispersion in morphology. Through blending, the thermal stability of pure component could be greatly improved, especially when the P3DDT content is 5 wt %. The conductivity measurements indicate that the conductivity increases with the increase of the P3DDT composition and doping time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel side-chain, liquid-crystalline ionomer (SLCI) with a poly(methyl hydrosiloxane) main chain and side chains containing sulfonic acid groups was used in blends of polyamide-1010 (PA1010) and polypropylene (PP) as a compatibilizer. The morphological structure, thermal behavior, and liquid-crystalline properties of the blends were investigated by Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy. The morphological structure of the interface of the blends containing SLCI was improved with respect to the blend without SLCI. The compatibilization effect of greater than 8 wt % SLCI for the two phases, PA1010 and PP, was better than the effects of other SLCI contents in the blends.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Naphthalene-labeled polypropylene (PP) was prepared by melt reaction of maleic anhydride-grafted-polypropylene (PP-g-MA) with 1-aminonaphthalene in a Barabender mixer chamber. The structure of the product was analyzed with fourier transform infrared (FT-IR), ultraviolet (UV) and fluorescence. The results showed that naphthyl groups grafted onto the PP molecular chains through the imide bonds formed between MA and 1-aminonaphthalene. The content of the chromophores was 1.8 X 10(-4) mol g(-1) measured by elemental analysis. Isothermal crystallization behavior was studied by differential scanning calorimeter (DSC). Labeled PP had a higher crystallization rate than PP-g-MA. Wide-angle X-Ray diffraction (WAXD) analysis revealed that labeled PP had higher crystallinity than PP-g-MA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conducting layers on KrF excimer-laser-irradiated polyimide film surfaces were investigated by XPS, SEM and Fourier transform infrared (FTIR)-Raman spectroscopy, Analysis of polyimide residue after laser irradiation provided valuable insight into the nature of the formation of conducting layers. The subtle different between KrF laser irradiation and the pyrolysis of polyimide was found by comparison of the formation process of conducting layers. A physical picture was presented to describe better the formation of conducting layers. Under KrF laser irradiation, polyimide films underwent thermal decomposition assisted by photoinduced direct bond breaking. Polycrystalline graphite was subsequently formed as the product of the secondary addition reaction of carbon-enriched clusters, Such reaction was supported by the remaining energy on the irradiated polyimide film surface. This result shows that the thermal process played an important role that was not just restricted to the formation of conducting layers, Copyright (C) 2000 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new type of organic-inorganic composite material was prepared by sol-gel method, and a peroxidase biosensor was fabricated by simply dropping sor-gel-peroxidase mixture onto glassy carbon electrode surface. The sol-gel composite film and enzyme membrane were characterized by Fourier-transform infrared (FT-IR) spectroscopy and EQCM, the electrochemical behavior of the biosensor was studied with potassium hexacyanoferrate(II) as a mediator, and the effects of pH and operating potential were explored for optimum analytical performance by using amperometric method. The response time of the biosensor was about 10 s; the linear range was up to 3.4 mM with a detection limit of 5 x 10(-7) M. The sensor also exhibited high sensitivity (15 mu A mM(-1)) and good long-term stability. In addition, the performance of the biosensor was investigated using flow injection analysis (FIA), and the determination of hydrogen peroxide in real samples was discussed. (C)2000 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyaniline nanoparticles were prepared on a highly oriented pyrolytic graphite (HOPG) surface from dilute polyaniline acidic solution (1 mM aniline + 1 M HClO4) using a pulsed potentiostatic method. Electrochemistry, Fourier transform infrared external reflection spectroscopy (FT-IR-ERS), X-ray photoelectron spectroscopy (XPS) and tapping-mode atomic force microscopy (TMAFM) were: used to characterize the composition and structure of the polyaniline nanoparticles. FT-IR-ERS and XPS results revealed that the polyaniline was in its emeraldine form. TMAFM measurement showed that the electropolymerized polyaniline nanoparticles dispersed on the:HOPG surface with a coverage of about 10(10) cm(-2). These nanoparticles were disk-shaped having a height of 10(-30) Angstrom and an apparent diameter varying from 200 to 600 Angstrom. The particle dimensions increased with the electropolymerization charge (Q) over the interval from 5.7 to 19.3 mu C cm(-2) (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multilayer films were fabricated by layer-by-layer electrostatic deposition techniques between poly(diallyIdimethylammonium chloride) (PDDA) and calf thymus DNA (CT DNA) on glassy carbon and quartz substrates. Electrochemical impedance spectroscopy (EIS), Fourier transform infrared (FTIR) spectroscopy and UV-vis spectroscopy demonstrated the uniform assembly of PDDA/DNA multilayer films, and X-ray photoelectron spectroscopy confirmed the elemental composition of the films. Moreover, the interaction of DNA in PDDA/DNA films with methyl green was investigated by UV-vis spectroscopy and circular dichroism (CD). (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel method using LB films as precursors to prepare pure inorganic ordered film with periodic structure was developed. Surfactant-stabilized SnO2 nanoparticulate organosols and TiO2 nanoparticulate organosols were prepared and used as spreading solutions. Using LB technique, the good film-forming ability of the surfactant-stabilized SnO2 nanoparticles and TiO2 nanoparticles was confirmed by the determination of the pi -A isotherms. The surfactant-stabilized SnO2 and TiO2 nanoparticulate monolayers were fabricated on the water surface and then were transferred to solid substrates (CaF2, quartz, silicon, and so on) alternately, layer-by-layer. Then the as-deposited alternate LB film was treated at different temperatures. The as-deposited alternate LB film and the treated film were characterized by Fourier transform infrared spectroscopy, UV visible spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results indicate that our method was successful. The as-deposited alternate LB film formed a periodic structure with a long spacing of 6.5 nm that was composed of SnO2 nanoparticles, TiO2 nanoparticles, and arachidic acid. The treated film composed of SnO2 nanoparticles and TiO2 nanoparticles formed a pure inorganic periodic structure with an ordered distance of 5.4 nm. (C) 2001 Academic Press.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of light-emitting poly(p-phenylene vinylene)s with triphenylamine units as hole-transporting moieties in the main chain were synthesized via Wittig condensation in good yields. The newly formed vinylene double bonds possessed a trans configuration, which was confirmed by Fourier transform infrared and NMR spectroscopy. The high glass-transition temperature (83-155 degreesC) and high decomposition temperature (> 300 degreesC) suggested that the resulting copolymers possessed high thermal stability. These copolymers, especially TAAPV1, possessed a high weight-average molecular weight (47,144) and a low polydispersity index (1.55). All the copolymers could be dissolved in common organic solvents, such as tetrahydrofuran (THF), CHCl3, CH2Cl2, and toluene, and exhibited intense photoluminesence in THF (the emission maxima were located from 478 to 535 nm) and in film (from 478 to 578 nm). The low onsets of the oxidation potential (0.6-0.75 V) suggested that the alternating copolymers possessed a good hole-transporting property due to the incorporation of triphenylamine moieties. (C) 2001 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermooxidative degradtion of ethylene oxide and tetra-hydrofuran (EO-THF) co-polyether has been studied by electron spin resonance (ESR), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. The initial degradation site was found to be at the a-carbon of the ether bond. Two free radicals which derived from dehydrogenation and oxygen addition were successfully detected by spin-trapping technique which used alpha -phenyl-N-tert-butyl nitrone(PBN) as spin trap. Both FT-IR and NMR have been used to follow structural changes of the copolyether during degradation. Nearly 20 product fragments including formate, carbonate, methyl, alcohol, methylene-dioxy, hydroperoxide and semiformal have been characterized by D-1 and D-2 NMR. The thermooxidtion of co-polyether preferred to occur on the THF units especially at the alternating linkage of EO and THF. Antioxidant (BHT) not only retarded the thermooxidation but also modified the degradation products with less ester and methylene-dioxy groups hut more hydroxyl and methyl groups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanocrystalline Yb2O3 of various particle sizes was prepared using sol-gel method. XRD analysis shows that the prepared nanocrystalline Yb2O3 is cubic in structure with space group Ia3. TEM photographs indicate that Yb2O3 nanoparticles are basically spherical in shape. Calculation of crystallite size indicates that the average crystallite size of Yb2O3 increases with increasing calcination temperature, but the average crystal lattice distortion rate decreases with increasing calcination temperature and crystallite size. This result shows that the smaller the crystallite size, the bigger the crystal lattice distortion, and the worse crystal growth. Solubility test of Yb2O3 in nitric acid shows that the surface activity of Yb2O3 increases with decreasing crystallite size. Fourier Transform Infrared Spectrometer (FTIR) spectra reveal that nanocrystalline Yb2O3 has higher surface activity; than that of ordinary Yb2O3. Absorbance intensity of Yb-O bond of nanocrystalline Yb2O3 is weaker than that of ordinary Yb2O3, and the absorbance of Yb-O bond of nanocrystalline Yb2O3 is small blue-shifted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to investigate the influence of different alkyl side chain substitution on the structures and properties of P3ATs, X-ray diffraction, differential scanning calorimetry (DSC), thermal gravity analysis (TGA), Fourier transform infrared spectra (FTIR) and ultraviolet-visible spectra (W-VIS) were applied to characterizing the samples of ploy(3-octylthiophene) (P3OT), poly(3-dodecylthiophene) (P3DDT) and poly(3-octadecylthiophene) (P3ODT). It is found that the different length of alkyl group substitution leads to great difference in molecular chain packings, according to the room temperature X-ray diffraction results. The temperature dependence of X-ray diffraction experiments were also performed to study the melting processes of P3ATs. With the increase in the number of carbon atoms in alkyl side chains, the melting point decreases, and the thermal stability decreases too. The results of both FTIR and W-VIS spectra indicate that the conjugation length of P3DDT is the longest. among the three P3ATs. (C) 2001 Elsevier Science B.V. All rights reserved.