338 resultados para Essay-film
Resumo:
The characteristics of intermediates of bacteriorhodopsin (bR) can be verified by chemical modification of its surroundings. CeO2 nanoparticles, which were obtained using water-in-oil (W/O) microemulsion and calcined at various temperatures, were used as chemical additive for the modification of bR. X-ray diffraction (XRD) shows that the mean particle sizes for the samples calcined at 500 and 800 degrees C are approximately 10 and 30 nm, respectively. We prepared CeO2 nanoparticle modified poly(vinyl alcohol) (bR-PVA) films with an optical density of about 1.5 at the ground state. It is observed that the lifetime of the Wintermediate for the modified films is prolonged compared with that of the unmodified ones, and the lifetime increases with decreasing particle size. A probable mechanism, which is likely to involve effective molecular interactions between the CeO2 nanoparticles and the bR molecules, is discussed. The hydroxyl groups, which might arise from the interaction between the nanoparticles and the surrounding water molecules, help to lower the ability of the Schiff base of uptaking protons in the Wintermediate. The results indicate that controlling the interactions between biomolecules and various nanomaterials would enlarge the functionality and the range of the application of nanoparticles.
Self-assembly morphology effects on the crystallization of semicrystalline block copolymer thin film
Resumo:
Self-assembly morphology effects on the crystalline behavior of asymmetric semicrystalline block copolymer polystyrene-block-poly(L-lactic acid) thin film were investigated. Firstly, a series of distinctive self-assembly aggregates, from spherical to ellipsoid and rhombic lamellar micelles (two different kinds of rhombic micelles, defined as rhomb 1 and rhomb 2) was prepared by means of promoting the solvent selectivity. Then, the effects of these self-assembly aggregates on crystallization at the early stage of film evolution were investigated by in situ hot stage atomic force microscopy. Heterogeneous nucleation initiated from the spherical micelles and dendrites with flat on crystals appeared with increasing temperature. At high temperature, protruding structures were observed due to the thickening of the flat-on crystals and finally more thermodynamically stable crystallization formed. Annealing the rhombic lamellar micelles resulted in different phenomena. Turtle-shell-like crystalline structure initiated from the periphery of the rhombic micelle 1 and spread over the whole film surface in the presence of mostly noncrystalline domain interior. Erosion and small hole appeared at the surface of the rhombic lamellar micelle 2; no crystallization like that in rhomb 1 occurred. It indicated that the chain-folding degree was different in these two micelles, which resulted in different annealing behaviors.
Resumo:
Well-ordered nanostructured polymeric supramolecular thin films were fabricated from the supramolecular assembly of poly(styrene-block-4-vinylpyridine) (PS-b-P4VP)(H+) and poly(methyl methacrylate)-dibenzo-18-crown-6-poly(methyl methacrylate) (PMCMA). A depression Of cylindrical nanodomains was formed by the block of P4VP(H+) and PMCMA associates surrounded by PS. The repulsive force aroused from the incompatibility between the block of P4VP(H+) and PMCMA was varied through changing the molecule weight (M-w) of PMCMA, the volume fraction of the block of P4VP(H+), and annealing the film at high temperature. Increasing the repulsive force led to a change of overall morphology from ordered nanoporous to featureless structures. The effects of solvent nature and evaporation rate on the film morphology were also investigated. Further evolution of surface morphologies from nanoporous to featureless to nanoporous structures was observed upon exposure to carbon bisulfide vapors for different treatment periods. The wettability of the film surface was changed from hydrophilicity to hydrophobicity due to the changes of the film surface microscopic composition.
Resumo:
The electrolyte, NaBF4, can be enriched into the matrix of poly(3,4-ethylenedioxythiophene) (PEDOT) film during the p-doping potential cycling between 0.6 and -0.9 V. It has been demonstrated that this enrichment is originated from the mixed ion transfer between doping and dedoping, i.e. BF4- anion migrate into the PEDOT film during the oxidation process, the Ne cation insert into the film during the reduction process, and then, the electrolyte is accumulated into the film matrix after the multiple CV cycling. The quantitative analysis of energy-dispersive X-ray spectroscopy (EDX) confirmed the enrichment of NaBF4 in the PEDOT film.
Resumo:
The authors report a random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran doped polystyrene thin films by introducing polystyrene nanoparticles. The aspects of concentration and diameter of polystyrene nanoparticles have been intensively investigated and found that the lasing occurs due to the scattering role of polystyrene nanoparticles. The devices emit a resonance multimode peak centered at a wavelength of 630 nm with a mode linewidth of less than 0.35 nm and exhibit threshold excitation intensity of as low as 0.06 mJ pulse(-1) cm(-2). The microscopic laser cavities formed by multiple scattering have been captured. The demonstration of random laser opens up the possibility of using organic scattering as alternative sources of coherent light emission.
Resumo:
Two- and three-dimensional Au nanoparticle/[tetrakis(N-methylpyridyl)porphyrinato]cobalt (CoTMPyP) nanostructured materials were prepared by "bottom-up" self-assembly. The electrocatalytic and plasmonic properties of the Au nanoparticle/CoTMPyP self-assembled nanostructured materials (abbreviated as Au/CoTMPyP SANMs) are tunable by controlled self-assembly of the An nanoparticles and CoTMPyP on indium tin oxide (ITO) electrode. The electrocatalytic activity of the Au/CoTMPyP SANMs can be tuned in two ways. One way is that citrate-stabilized An nanoparticles are positioned first on ITO surface with tunable number density, and then positively charged CoTMPyP ions are planted selectively on these gold sites. The other way is that An nanoparticles and CoTMPyP are deposited by virtue of layer-by-layer assembly, which can also tune the amount of the as-deposited electrocatalysts. FE-SEM studies showed that three-dimensional SANMs grow in the lateral expansion mode, and thermal annealing resulted in both surface diffusion of nanoparticles and atomic rearrangement to generate larger gold nanostructures with predominant (I 11) facets.
Resumo:
A hybrid thin film containing Pt nanoparticles and [tetrakis(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) modified multi-walled carbon nanotubes (MWNTs) on a glassy carbon (GC) electrode surface was fabricated. This hybrid film electrode exhibited remarkable electrocatalytic activity for oxygen reduction and high stability with promising applications in fuel cells.
Resumo:
Through layer-by-layer (LBL) assembly technique, iron oxide (Fe3O4) nanoparticles coated by poly (diallyldimethylammonium chloride) (PDDA) and Preyssler-type polyoxometalates (NH4)(14)NaP5W30O110.31H(2)O (P5W30) were alternately deposited on quartz and ITO substrates, and 4-aminobenzoic acid modified glassy carbon electrodes. Thus-prepared multilayer films were characterized by UV-visible spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. It was proved that the multilayer films are uniform and stable. And the electrocatalytic activities of the multilayer films can be fine-tuned by adjusting the assembly conditions in the LBL assembly process, such as the pH of the assembly solution. The multilayer films fabricated from P5W30 solutions dissolved in 0.1 M H2SO4 exhibit high electrocatalytic response and sensitivity toward the reduction of two substrates of important analytical interests, HNO2 and IO3- whereas the films assembled with P5W30 solutions dissolved in 1.0 M H2SO4 show remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). Furthermore, the electrocatalytic properties of the HER of the latter film can be obtained from the former film upon exposure to 1.0 M H2SO4 for several hours.
Resumo:
By adding a small amount of multiwall carbon nanotubes (MWNTs) to polyethylene oxide (PEO) and a salt system, a new type of nanocomposite film was constructed. At ambient temperature, the conductivity of the PEO-salt-0.5 wt % MWNTs was nearly three orders of magnitude higher than that of the PEO-salt system. The conductive property of the nanocomposite film was characterized by ac impedance and the differential scanning calorimetry technique.
Resumo:
Polyaniline-camphorsulfonic acid (PAN-CSA) composite film on platinum electrode surface has been synthesized via the electrochemical polymerization of aniline in the presence of camphorsulfonic acid (CSA). It was found that the doping of polyaniline (PAN) with CSA extends the electroactivity of PAN in neutral and even in alkaline media. The PAN-CSA composite film coated platinum electrodes are shown to be good electrocatalytic surfaces for the oxidation of ascorbic acid (AA) in phosphate buffer solution (PBS) of pH 7.0. The anodic peak potential of AA shifts from 0.63 V at the bare platinum electrode to 0.34 V at the PAN-CSA composite modified platinum electrode with a greatly enhanced current response. A linear calibration graph is obtained over the AA concentration range of 5-50 mM using cyclic voltammetry. The kinetics of the catalytic reaction are investigated using rotating disk electrode voltammetry and chronoamperometry. The results are explained using the theory of electrocatalytic reactions at chemically modified electrodes. The PAN-CSA composite on the electrode surface shows good reproducibility and stability.
Resumo:
Calf thymus DNA was immobilized on functionalized glassy carbon, gold and quartz substrates, respectively, by the layer-by-layer (LBL) assembly method with a polycation QPVP-Os, a quaternized poly(4-vinylpyridine) partially complexed with osmium bis(2,2'-bipyridine) as counterions. UV-visible absorption and surface plasmon resonance spectroscopy (SPR) showed that the resulting film was uniform with the average thickness 3.4 nm for one bilayer. Cyclic voltammetry (CV) showed that the total surface coverage of the polycations increases as each QPVP-Os/DNA bilayer added to the electrode surface, but the surface formal potential of Os-centered redox reaction shifts negatively, which is mainly attributed to the intercalation of redox-active complex to DNA chain. The electron transfer kinetics of electroactive QPVP-Os in the multilayer film was investigated by electrochemical impedance experiment for the first time. The permeability of Fe(CN)(6)(3-) in the solution into the multilayer film depends on the number of bilayers in the film. It is worth noting that when the multilayer film is up to 4 bilayers, the CV curves of the multilayer films display the typical characteristic of a microelectrode array.
Resumo:
We have followed the time development of the microdomain structure in symmetric diblock copolymer poly(styrene-b-methyl methacrylate), P(S-b-MMA), ultrathin films via PMMA-selective solvent vapor treatment by atomic force microscopy (AFM). After preparation on a substrate preferentially attracting the PMMA block, PS forms a continuous layer at a film's free surface. With subsequent solvent vapor treatment, the film gradually shows a well-ordered hexagonally packed nanocylinders structure. It is shown that only when the film thickness is less than the 1/2L(0) (lamellar repeat spacing), and exposed to PMMA block selective solvent for an appropriate time, can the well-ordered hexagonally packed nanocylinders form. On an extended solvent vapor treatment, a mixed morphology containing nanocylinders and stripes appears, followed by the striped morphologies. When the annealing time is long enough, the film comes back to the flat surface again, however, with PMMA instead of PS dominating the free surface.
Resumo:
We have studied a morphological instability of a double layer comprising the polymer film and air gap confined between the two plates set to different temperatures. The temperature gradient across the double layer causes the breakup of the polymer film into well-defined columnar, striped or spiral structures spanning the two plates. The pattern formation mechanisms have been discussed. The formed patterns can be transferred to produce PDMS stamp, a key element of soft lithography for future microfabrication.
Resumo:
Ordered hexagonal droplets patterns in phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/PVP) formed due to the convection effect by solvent evaporation. The influences of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to PVP on the PVP-rich domains pattern formation and distributions were investigated by atomic force microscope (AFM). Only in an appropriate range of molecular weight of PS, can the ordered pattern form. Too low or too high molecular weight of PS led no ordered pattern due to the viscosity effects. The increase of solvent evaporation rate decreased the mean radius of the PVP-rich domains and the intervals between the centers of the domains due to the enhancement of the viscosity on the top layer of the fluid film. The increase of the weight ratio of PS to PVP decreased mean radius of the PVP-rich domains whereas the intervals between the centers of droplets remained constant. Therefore, the size and the distributions of ordered patterns can be tuned by the polymer molecular weight, the weight ratio of the two components and the solvent evaporation rate.
Resumo:
The dewetting process of thin polystyrene (PS) film with built-in ordered disturbance by capillary force lithography (CFL) has. been investigated in situ by AFM. Two different phenomena are observed depending on the excess surface energy (DeltaF(gamma)) of the system. When DeltaF(gamma) is less than a certain critical value (i.e., the disturbance amplitude is under a critical value), the PS film would be flattened and become stable finally by heating above T-g. While, if the size of the disturbance amplitude is larger than the critical value, ordered PS liquid droplets form by further dewetting. The pattern formation mechanisms and influencing factors have been discussed in detail.