370 resultados para DOPED CRYSTALS
Resumo:
We found that Ce3+:Lu2Si2O7 single crystals could be excited at 800 nm by using a femtosecond Ti:sapphire laser. The emission spectra of Ce3+:Lu2Si2O7 crystals were the same for one-photon excitation at 267 nm as for excitation at 800 nm. The emission intensity of Ce3+: Lu2Si2O7 crystals was found to depend on the cube of the laser power at 800 nm, consistent with simultaneous absorption of three 800 nm photons. The measured value of the three-photon absorption cross section is sigma'(3) = 2.44 x 10(-77) cm(6) s(2). (c) 2006 Optical Society of America.
Resumo:
Polycrystalline Zn1-xNixO diluted magnetic semiconductors have been successfully synthesized by an auto-combustion method. X-ray diffraction measurements indicated that the 5 at% Ni-cloped ZnO had the pure wurtzite structure. Refinements of cell parameters from powder diffraction data revealed that the cell parameters of Zn0.95Ni0.05O were a little bit larger than ZnO. Transmission electron microscopy observation showed that the as-synthesized powders were of the size similar to 60 nm. Magnetic investigations showed that the nanocystalline Zn0.95Ni0.05O possessed room temperature ferromagnetisin with the saturation magnetic moment of 0.1 emu/g (0.29 mu(B)/Ni2+). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effects of Na+ doping level on the thermal conductivities, absorption and emission spectra, and fluorescence lifetimes of Yb3+ ,Na+ :CaF2 crystals were systematically studied. Sites structure, covalent force, and crystal field strength of Yb3+ :CaF2 crystals were markedly varied by codoping Na+ as charge compensator. The 2.0at% Yb3+ and 3.0at% Na+-codoped CaF2 crystal was demonstrated to operate in diode-pumped passively mode-locking scheme. Transform-limited 1 ps laser pulses were obtained, showing the crystal capable of producing ultra-short laser pulses. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Broadband neat-infrared emission from transparent Ni2+-doped sodium aluminosilicate glass-cermaics is observed. The broad emission is centered at 1290 nm and covers the whole telecommunication wavelength region (1100-1700 nm) with full width at half maximum of about 340 nm. The observed infrared emission could be attributed to the T-3(2)(F) -> (3)A(2)(F) transition of octahedral Ni2+ ions that occupy high-field sites in nanocrystals. The product of the lifetime and the stimulated emission cross section is 2.15 x 10(-24) cm(2)s. It is suggested that Ni2+-doped sodium aluminosilicate glass ceramics have potential applications in tunable broadband light sources and broadband amplifiers.
Resumo:
由于Nd^3+离子半径0.112nm和Y^3+离子半径0.101nm相差10.9%,使得Nd^3+离子非常难于进入YAG晶体中。我们用温度梯度法生长了大尺寸高浓度(2.8 at%)的Nd:YAG晶体,同时与用提拉法Nd:GGG晶体进行了比较。分析了高浓度掺杂Nd:GGG和Nd:YAG晶体浓度猝灭问题。研究了不同浓度掺杂的猝灭效应。在同样的掺杂浓度下,我们发现它们的猝灭程度不同,其原因是两种晶体中△Emism(-)和(+) △Emism(+) 不同。
Resumo:
Large sized neodymium-doped Y3Al5O12 (Nd:YAG) laser crystals have been grown by temperature gradient technique (TGT) method and compared with Czochralski (Cz) method. The comparison of these two crystal growth methods has been listed. The results showed that the TGT method has many advantages over the Cz method. The concentration distribution of Nd ions in the crystals was determined and the absorption spectra of these crystals have been investigated and compared. The TGT grown highly doped Nd:YAG crystal has a larger absorption FWHM than that of Cz grown Nd:YAG crysral. Highly doped Nd:YAG (similar to 2.8 at. pct) crystals could be obtained by TGT.
Resumo:
Color centers and impurity defects of Ce:YAG crystals grown in reduction atmosphere by temperature gradient techniques have been investigated by means of gamma irradiation and thermal treatments. Four absorption bands associated with color centers or impurity defects at 235, 255, 294 and 370 nm were observed in as-grown crystals. Changes in optical intensity of the 235 and 370 nm bands after gamma irradiation indicate that they are associated with F+-type color center. Charge state change processes of Fe3+ impurity and Ce3+ ions take place in the irradiation process. The variations of Ce3+ ions concentration clearly indicate that Ce4+ ions exist in Ce:YAG crystals and gamma irradiations could increase the concentration of Ce3+ ions. Annealing treatments and the changes in optical density suggest that a heterovalent impurity ion associated with the 294 nm band seems to be present in the crystals. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Yb: YAG (Yb: Y3Al5O12) crystals have been grown by temperature-gradient techniques (TGT) and their color centers and impurity defects were investigated by means of gamma irradiations and thermal treatment. Two color centers located at 255 and 290 nm were observed in the as-grown TGT-Yb: YAG. Analysis shows that the 255 nm band may be associated with Fe3+ ions. Absorption intensity changes of the 290 nm band after gamma irradiation and thermal treatment indicate that this band may be associated with oxygen-vacancy defects. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A new kind of Nd3+, -doped high silica glass (SiO2 > 96% (mass fraction)) was obtained by sintering porous glass impregnated with Nd3+, ions. The absorption and luminescence properties of high silica glass doped with different Nd3+, concentrations were studied. The intensity parameters Omega(t) (t = 2, 4, 6), spontaneous emission probability, fluorescence lifetime, radiative quantum efficiency, fluorescence branching ratio, and stimulated emission cross section were calculated using the Judd-Ofelt theory. The optimal Nd3+ concentration in high silica glass was 0.27% (mole fraction) because of its high quantum efficiency and emission intensity. By comparing the spectroscopic parameters with other Nd3+ doped oxide glasses and commercial silicate glasses, the Nd3+-doped high silica glasses are likely to be a promising material used for high power and high repetition rate lasers.
Resumo:
A new method was used to prepare erbium-doped high silica (SiO2% > 96%) glasses by sintering nanoporous glasses. The concentration of erbium ions in high silica glasses can be considerably more than that in silica glasses prepared by using conventional methods. The fluorescence of 1532 nm has an FWHM (Full Wave at Half Maximum) of 50 nm, wider than 35 nm of EDSFA (erbium-doped silica fiber amplifer), and hence the glass possesses potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that the quantum efficiency of this erbium-doped glass is about 0.78, although the erbium concentration in this glass (6 x 103) is about twenty times higher than that in silica glass. These excellent characteristics of Er-doped high silica glass will be conducive to its usage in optical amplifiers and microchip lasers.
Resumo:
Cr-doped and Mg, Cr-codoped Al2O3 crystals were grown by Czochralski method. The latter has a broad absorption peak in 900-1600nm region. We investigated the change of the absorption band with annealing under different atmospheres or temperatures. Through establishing a structure defect model, we successfully interpreted all the experiment results and confirmed that the extremely broad infrared absorption band belonged to Cr4+, which should occupy the octahedral sites in Al2O3.
Resumo:
用提拉法生长了掺铬、钕的钆镓石榴石(Cr^4+,Nd^3+:GGG)自调Q激光品体。报道了室温下的吸收光谱和荧光光谱特性。分析了Cr离子浓度对光谱性质的影响。比较了Cr^4+:GGG,Nd^3+:GGG和(Cr^4+,Nd^3+):GGG晶体吸收光谱的关系。测量了(Cr^4+,Nd^3+):GGG晶体和Nd^3+:GGG晶体的荧光寿命,它们分别是33μs和250μs。实验表明,(Cr^4+,Nd^3+):GGG晶体是一种非常有潜力的自调Q激光晶体,可以实现大功率激光器的小型化和全固态化。
Resumo:
应用中频感应提拉法生长出不同掺杂浓度的Yb:FAP激光晶体,运用电感耦合等离子体原子发射光谱仪(ICP-AES)测定了Yb^3+离子存Yb:FAP晶体中的分凝系数约为0.03。随着晶体的生长,晶体中Yb^3+离子的轴向浓度逐渐增大。研究Yb:FAP晶体在77K和300K温度下的吸收光谱发现,振动谱的变化主要是由电子-声子近共振耦合作用引起的。系统地研究了不同Yb^3+离子掺杂浓度Yb:FAP晶体的吸收光谱和荧光光谱。通过吸收光谱的测量计算了晶体的吸收截面。Yb:FAP晶体在904nm和982nm处存在Yb
Resumo:
High-quality neodymium doped GGG laser crystals have been grown by Czochralski (Cz) method. Results of Nd:GGG thin chip laser operating at 1.064 μm pumped by Ti:sapphire laser operating at 808 nm were reported. The slop efficiency was as high as 20%.
Resumo:
The absorption spectra of undoped Y2SiO5 crystals were studied before and after gamma-irradiation. After gamma-irradiation, the additional absorption peaks at 260-270 and 320nm were observed in as-grown and H,annealed Y2SiO5 crystal, but it did not occur in air-annealed Y2SiO5 crystal. These absorption peaks were attributed to F color centers and O- hole centers, respectively. Owing to more oxygen vacancies and color centers in H-2-annealed Y2SiO5 crystal than that in as-grown Y2SiO5 crystal after gamma-irradiation, the additional absorption peaks were more intense in the former than that in the latter. With the irradiation dose increasing from 20 to 220kGy, the intensity of additional absorption peaks increased.