560 resultados para Catalytic polymerization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability constants and species distributions of complexes of two lanthanide ions, Eu (III) and Tb(III), with a macrocyclic ligand, 3,6, 9, 17 20, 23-hexaazo-29, 30-dihydroxy-13, 27-dimethyl-tricylco-[23,3,1,1(11,15)] triaconta-1 (28) 11,13,15 (30), 25 26-hexane (BDBPH), in 1: 1 and 2: 1 system, were determined potentiometrically in 50% ethanol solution, at 35.0 degrees C and I = 0.100 mol/L (KCl). The two metal ions could form deprotonated mono- or dinuclear complexes with BDBPH with high stability after the three protons of the ligand completely neutralized. At higher pH values, Eu(M) could not form hydroxo complexes with BDBPH, while Tb(III) could form hydroxo complexes in the types of M2L(OH) M2L(OH)(2) and M2L (OH)(2). The kinetic study on the hydrolysis reaction of his (4-nitrophenyl) phosphate (BNPP) catalyzed by Tb-BDBPH system (2:1) was carried out in aqueous solution (pH 7.0 similar to 10.0) at 35 degrees C with I = 0.1000 mol/L (KCl). The second-order rate constant k(BNPP) (2.3 x 10(-3) (mol/L)(-1)center dot s(-1)) was determined. The dinuclear monohydroxo species, L-Tb-2-OH, is kinetically active species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New neutral nickel(II) complexes bearing nonsymmetric bidentate pyrrole-imine chelate ligands (4a-d), [2-(ArNCH)C4H3N]Ni(PPh3)Ph [Ar=2,6-diisopropylphenyl (a), 2-methyl-6-isopropylphenyl (b), 2,6-diethylphenyl (c), 2-tert-butylphenyl (d)], have been prepared in good yields from the sodium salts of the corresponding ligands and trans-Ni(PPh3)(2)(Ph)Cl, and the structure of complex 4a has been confirmed by X-ray crystallographic analysis. These neutral Ni(II) complexes were investigated as catalysts for the vinylic polymerization of norbornene. Using modified methylaluminoxane (MMAO) as a cocatalyst, these complexes display very high activities and produce great mass polymers. Catalyst activity of up to 4.2 x 10(7) g (mol Ni h)(-1) and the viscosity-average molecular weight of polymer of up to 9.2 x 10(5) g mol(-1) were observed. Catalyst activity, polymer yield, and polymer molecular weight can be controlled over a wide range by the variation of reaction parameters such as Al-Ni ratio, norbornene-catalyst ratio, monomer concentration, polymerization reaction temperature and time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A catalyst with porous polystyrene beads supported Cp2ZrCl2 was prepared and tested for ethylene polymerization with methylaluminoxane as a cocatalyst. By comparison, the porous supported catalyst maintained higher activity and produced polyethylene with better morphology than its corresponding solid supported catalyst. The differences between activities of the catalysts and morphologies of the products were reasonably explained by the fragmentation processes of support as frequently observed with the inorganic supported Ziegler-Natta catalysts. Investigation into the distribution of polystyrene in the polyethylene revealed the fact that the porous polystyrene supported catalyst had undergone fragmentation during polymerization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Divalent samarocene complex [(C5H9C5H4)(2)Sm(tetrahydrofuran)(2)] was prepared and characterized and used to catalyze the ring-opening polymerization of L-lactide (L-LA) and copolymerization of L-LA with caprolactone (CL). Several factors affecting monomer conversion and molecular weight of polymer, such as polymerization time, temperature, monomer/catalyst ratio, and solvent, were examined. The results indicated that polymerization was rapid, with monomer conversions reaching 100% within 1 h, and the conformation of L-LA was retained. The structure of the block copolymer of CL/L-LA was characterized by NMR and differential scanning calorimetry. The morphological changes during crystallization of poly(caprolactone) (PCL)-b-P(L-LA) copolymer were monitored with real-time hot-stage atomic force microscopy (AFM). The effect of temperature on the morphological change and crystallization behavior of PCL-b-P(L-LA) copolymer was demonstrated through AFM observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylene homopolymerizations and copolymerizations were catalyzed by zirconocene catalysts entrapped inside functionalized. montmorillonites that had been rendered organophilic via the ion exchange of the interlamellar cations of layered montmorillonite with hydrochlorides Of L-amino acids (AAH(+)Cl(-)) or their methyl esters (MeAAH(+)Cl(-)), with or without the further addition of hexadecyltrimethylammonium bromide (C16H33N+Me3Br-; R4N+Br-). In contrast to the homogeneous CP2ZrCl2/methylaluminoxane catalyst for ethylene homopolymerizations and copolymerizations with 1-octene, the intercalated Cp2ZrCl2 activated by methylaluminoxane for ethylene homopolymerizations and copolymerizations with 1-octene proved to be more effective in the synthesis of polyethylenes with controlled molecular weights, chemical compositions and structures, and properties, including the bulk density. The effects of the properties of the organic guests on the preparation and catalytic performance of the intercalated zirconocene catalysts were studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of salts of the 2,5-disubstituted amino-p-benzoquinone bridging ligand (la-e) with trans-bis(triphenylphosphane)phenylnickel(II) chloride results in the binuclear complexes 2a-e, which show high activities for ethylene polymerization without any cocatalysts. High-molecular-weight, moderately branched polyethylene of broad molecular-weight distribution was obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile method for the synthesis of biphenyl polyimides, which involves the nickel-catalyzed coupling of aromatic dichlorides containing imide structure in the presence of zinc and triphenylphosphine, has been developed. The polymerizations proceeded smoothly under mild conditions and produced biphenyl polyimides with inherent viscosities of 0.13-0.98 dL/g. The polymerizations of bis(4-chlorophthalimide)s with bulky side substituents gave high molecular weight polymers. Low molecular weight polymers from bis(4-chlorophthalimide)s containing rigid diamine moieties and bis(3-chlorophthalimide)s were obtained because of the formations of polymer precipitate and cyclic oligoimides, respectively. The effects of various factors, such as amount of catalyst, solvent volume, ligand, reaction temperature, and time, on the polymerization were studied. The random copolymerization of two bis(chlorophthalimide)s in varying proportions produced medium molecular weight material. The TgS of prepared polyimides were observed at 245-311 degreesC, and the thermogravimetry of polymers showed 10% weight loss in nitrogen at 470-530 degreesC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypropylene/montmorillonite (PP/MMT) nanocomposites were prepared by in-situ polymerization using a MMT/MgCl2/TiCl4-EB Ziegler-Natta catalyst activated by trietbylaluminum (TEA). The enlarged layer spacing of MMT was confirmed by X-ray wide angle diffraction (WAXD), demonstrating that MMT were intercalated by the catalyst components. X-ray photoelectron spectrometry (XPS) analysis proved that TiCl4 was mainly supported on MgCl2 instead of on the surface of MMT The exfoliated structure of MMT layers in the PP matrix of PP/MMT composites was demonstrated by WAXD patterns and transmission electron microscopy (TEM) observation. The higher glass transition temperature and higher storage modulus of the PP/MMT composites in comparison with pure PP were revealed by dynamic mechanical analysis (DMA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyethylene (PE)/montmorillonite (MMT) nanocomposites were prepared by in situ coordination polymerization using a MMT/MgCl2/TiCl4 catalyst activated by AI(Et),. The catalyst was prepared by first diffusing MgCl2 into the swollen MMT layers, followed by loading TiCl4 on the inner/outer layer surfaces of MMT where MgCl2 was already deposited. The intercalation of MMT layers by MgCl2 and TiCl, was demonstrated by the enlarged interlayer spacing determined by WAXD. The nanoscale dispersion of MMT layers in the polyethylene matrix was characterized by WAXD and TEM. As a consequence, the crystallinity of the nanocomposite decreased sharply, whereas the tensile strength was significantly improved compared to that of virgin polyethylene of comparable molecular weight. The confinement of the nanodispersed MMT layers to molecular chain and the strong interaction between the nanoscale MMT layers and the resin matrix were thought to account for the decrease of crystallinity and the remarkable enhancement of strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly (6-caprolactone) (PCL) and poly (L-lactide) (PLA) were prepared by ring-opening Polymerization catalyzed by organic amino calcium catalysts (Ca/PO and Ca/EO) which were prepared by reacting calcium ammoniate Ca(NH3)(6) with propylene oxide and ethylene oxide, respectively. The catalysts exhibited high activity and the ring-opening polymerization behaved a quasi-living characteristic. Based on the Fr-IR spectra and the calcium contents of the catalysts, and based on the H-1 NMR end-group analysis of the low molecular weight PCL prepared using catalysts Ca/PO and Ca/EO, it was proposed that the catalysts have the structure of NH2-Ca-O-CH(CH3)(2) and NH2-CaO-CH2CH3 for Ca/PO and Ca/EO, respectively. The ring-opening polymerization of CL and LA follows a coordination-insertion mechanism and the active site is the Ca-O bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An amino isopropoxyl strontium (Sr-PO) initiator, which was prepared by the reaction of propylene oxide with liquid strontium ammoniate solution, was used to carry out the ring-opening polymerization (ROP) of cyclic esters to obtain aliphatic polyesters, such as poly(epsilon-caprolactone) (PCL) and poly(L-lactide) (PLLA). The Sr-PO initiator demonstrated an effective initiating activity for the ROP of epsilon-caprolactone (epsilon-CL) and L-lactide (LLA) under mild conditions and adjusted the molecular weight by the ratio of monomer to Sr-PO initiator. Block copolymer PCL-b-PLLA was prepared by sequential polymerization of epsilon-CL and LLA, which was demonstrated by H-1 NMR, C-13 NMR, and gel permeation chromatography. The chemical structure of Sr-PO initiator was confirmed by elemental analysis of Sr and N, H-1 NMR analysis of the end groups in epsilon-CL oligomer, and Fourier transform infrared (FTIR) spectroscopy. The end groups of PCL were hydroxyl and isopropoxycarbonyl, and FTIR spectroscopy showed the coordination between Sr-PO initiator and model monomer gamma-butyrolactone. These experimental facts indicated that the ROP of cyclic esters followed a coordination-insertion mechanism, and cyclic esters exclusively inserted into the Sr-O bond.