329 resultados para poly(2-oxazoline)
Compatibility and specific interactions in poly(beta-hydroxybutyrate) and poly(p-vinylphenol) blends
Resumo:
The miscibility and specific interactions in poly (beta-hydroxybutyrate) (PHB)/poly(p-vinylphenol) (PVPh) blends were studied by differential scanning calorimetry(DSC) , fourier transform infrared(FTIR) spectrometer and high resolution solid state C-13 NMR, A single composition-dependent glass transition temperatures were obtained by DSC which indicate the blends of PHB/PVPh were miscible in the melt state, The experimental glass transition temperatures were fitted quite well with those obtained from Couchman-Karasz equation. The FTIR study shows that the strong intermolecular hydrogen bonding exists in blends of PHB with strong proton acceptor and PVPh with strong proton donor and is the origin of its compatibility. The CPMAS C-13 NMR spectra also show that the strong hydrogen bonding exists in PHB/PVPh blends. From the T-1 rho(H) relaxation time it follows that the blends of PHB/PVPh(40/60, 20/80) studied are completely homogeneous on the scale of about 3.2 nm.
Resumo:
The viscoelastic behavior of phenolphthalein poly(ether ketone) (PEK-C) and its relationship to yielding was studied. The following phenomena were observed: (1) The relaxation behavior at strain near yield closely approximated that at low strain but near the T-g; (2) the temperature and strain rate dependence of yield stress could be modeled by the one-process Eyring theory and the value of the activation volume was the same as that of the glass transition; and (3) according to the Zhurkov-Bueche equation, the cu transition was related to the yield behavior. All these results indicated that the glass transition was the main factor that controlled the yield behavior. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The crystallization and melting behaviours of a multiblock copolymer comprising poly(ether ether ketone) (PEEK) and poly(ether sulfone) (PES) blocks whose number average molecular weights <((M)over bar (n)'s)> were 10 000 and 2900, respectively, were studied. The effect of thermal history on crystallization was investigated by wide-angle X-ray diffraction measurement. A differential scanning calorimeter was used to detect the thermal transitions and to monitor the energy evolved during the isothermal crystallization process from the melt. The results suggest that the crystallization of the copolymer becomes more difficult as compared with that of pure PEEK. The equilibrium melting point of the copolymer was found to be 357 degrees C, about 30 degrees C lower than that of pure PEEK. During the isothermal crystallization, relative crystallinity increased with crystallization time, following an Avrami equation with exponent n approximate to 2. The fold surface free energy for the copolymer crystallized from the melt was calculated to be 73 erg cm(-2), about 24 erg cm(-2) higher than that of pure PEEK. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The miscibility of blends of poly(vinylidene chloride-co-acrylonitrile) (VDC-AN) and poly(methyl methacrylate) (PMMA) has been studied with DSC, FT-IR, and NMR methods. The results indicate that the VDC-AN/PMMA blends are miscibile on a molecular level, and the dipole-dipole interactions between C=O and C-Cl-2 and/or interpolymer hydrogen bondings between COOCH3 and CN and CCl groups play the role on the miscibility of the blends. It is found that the -CCl2- groups have two different chemical environments in the pure VDC-AN copolymer, which may result from the different configurations of the copolymer, such as -CCl2- groups in the ''alternating'' segments and -CCl2- groups in the ''blocky'' segments as proposed. It is the -CCl2- group in the ''alternating'' segment that takes part in the dipole-dipole interaction with C=O group in PMMA.
Resumo:
Poly(aryl ether ketone ketone)s (PEKK) was a high-performance engineering plastics, By means of Wide Angle X-ray Diffraction (WAXD) and Differential Scanning Calorimetry (DSC) methods, PEKK samples crystallized in solvent induction, from glass state and from melting state were studied, Crystal forms I and II for PEKK were found, The formation of crystal form II was dependent on thermal history and solvent induction, and this form II had melting point 10 degrees C or so lower than that of form I crystallized from glass state, All PEKK samples had low melting peaks which were relevant to the polarization of PEKK molecular chain, while they had nothing to do with thermal history, The heat of fusion for PEKK low melting peaks accounted for,percentage of 2 to 10 or so of the whole heat of fusion, And PEKK has its equilibrium melting point of 409 degrees C.
Resumo:
The melting behavior of semicrystalline poly(ether ether ketone ketone) (PEEKK) has been studied by differential scanning calorimetry (DSC). When PEEKK is annealed from the amorphous state, it usually shows two melting peaks. The upper melting peaks arise first, and the lower melting peaks are developed later. The upper melting peaks shown in the DSC thermogram are the combination (addition) of three parts: initial crystal formed before scanning; reorganization; and melting-recrystallization of lower melting peaks in the DSC scanning period. In the study of isothermal crystallization kinetics, the Avrami equation was used to analyze the primary process of the isothermal crystallization; the Avrami constant, n, is about 2 for PEEKK from the melt and 1.5 for PEEKK from the glass state. According to the Lauritzen-Hoffman equation, the kinetic parameter of PEEKK from the melt is 851.5 K; the crystallization kinetic parameter of PEEKK is higher than that of PEEK, and suggests the crystallizability of PEEKK is less than that of PEEK. The study of crystallization on PEEKK under nonisothermal conditions is also reported for cooling rates from 2.5 degrees C/min to 40 degrees C/min, and the nonisothermal condition was studied by Mandelkern analysis. The results show the nonisothermal crystallization is different from the isothermal crystallization. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The electrochemically deposited poly(o-phenylenediamine) film on a Pt electrode has been investigated utilizing in situ external reflection FTIR spectroelectrochemistry technique. The prepared ladder polymer film is found to be partially ring-opened. The dopant ClO4- is evidenced to orient in such a way that more than one oxygen atom attach to the charge sites of the polymer. This suggests that positive charges of oxidized polymer are partially delocalized over the whole chains. The proton movement observed during the oxidation reaction is associated with the solvated MeCN molecule. It is proposed that the proton diffusion, dissolvation and protonation of the film may be essential to the electrochemical reduction reaction of the film. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
A series of narrow molecular weight distribution fractions of phenolphthalein polyarylether sulfone(PES-C) had been prepared, The <(M) over bar (w)> of these fractions were determined by conventional light scattering method. The [eta] and the Huggins slope constant k' in DMF, CHCl3 and 1,2-dichloroethane were also determined. The Huggins constants are greater than 0.5 in all of these solvents showing a special solubility behavior. The Mark-Houwink equations of PES-C in these solvents at 25 degrees C are [eta] = 2.79 x 10(-2) <(M) over bar (0.615)(w)> (DMF); [eta] = 3.96 x 10(-2) <(M) over bar (0.58)(w)> (CHCl3); [eta] = 7.40 x 10(-2) <(M) over bar (0.52)(w)> (CH2ClCH2Cl).
Resumo:
Using a recently developed laser light-scattering (LLS) procedure, we accomplished the characterization of a broadly distributed unfractionated phenolphthalein poly(aryl ether ketone) (PEK-C) in CHCl3 at 25 degrees C. The laplace inversion of precisely measured intensity-intensity time correlation function from dynamic LLS leads us first to an estimate of the characteristic line-width distribution G(Gamma) and then to the translational diffusion coefficient distribution G(D). By using a previously established calibration of D (cm(2)/s) = 2.37 X 10(-4)M(-0.57), were able to convert G(D) into a differential weight distribution f(w)(M). The weight-average molecular weight M(w) calculated from f(w)(M) agrees well with that directly measured in static LLS. Our results indicate that both the calibration and LLS procedure used in this study are ready to be applied as a routine method for the characterization of the molecular weight distribution of PEK-C. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Five different molecular weight phenolphthalein poly(aryl ether ketone) (PEK-C) fractions in CHCl3 were studied by static and dynamic laser light scattering(LLS). The dynamic LLS revealed that the PEK-C samples contain some large polymer clusters. These large clusters can be removed by filtering the solution with a 0.1-mu m filter. We found that the persistence length of PEK-C in CHCl3 at 25 degrees C is similar to 2 nm and the Flory characteristic ratio, C-infinity is similar to 25. Our results showed that [R(g)(2)](1/2)(z) = (3.50+/-0.20) x 10(-2)M(w)(0.54+/-0.01) and [D] = (2.37+/-0.05) x 10(-4)M(w)(-0.55+/-0.01), with [R(g)(2)](1/2)(z), M(w), and [D] being the z-average radius of gyration, the weight-average molecular weight, and the z-average translational diffusion coefficient, respectively. A combination of static and dynamic LLS results enabled us to determine D = (2.20+/-0.10) x 10(-4)M(-0.555+/-0.015), where D and M correspond to monodisperse species. Using this calibration between D and M,we have determined molecular weight distributions of five PEK-C fractions from their corresponding translational diffusion coefficient distribution.
Resumo:
Structures of poly(ether ether ketone ketone)-poly(ether biphenyl ether ketone ketone) copolymers were studied by using small angle X-ray scattering and the one-dimensional electron density correlation function method. The results revealed that structures of the aggregated state of the copolymers depend closely on the biphenyl content (n(b)). When n(b) = 0.35, invariant Q, long period L, average thickness of crystal lamellae (d) over bar, electron density difference eta(c) - eta(a) and degree of crystallinity W-c,W-x assume minimum values.
Resumo:
Block copolymers of poly(ethersulphone) (PES) oligomers with liquid crystalline polyester units were synthesized by the reaction of dihydroxy-terminated poly(ether sulphone) oligomers (number-average molecular weights: 704, 1,158 and 2570) and terephthaloyl bis(4-oxybenzoyl chloride), and their properties were investigated. The results indicated that the copolymer with PES segments of molecular weight of 704 possessed birefringent features when annealed at 360 degrees C, while the copolymer with PES segments of molecular weight of 2,570 became isotropic. Also, the block copolymers had a better chemical resistance and high-temperature stability than PES.
Resumo:
The electrochemistry of cytochrome c was studied at the PVP-modified gold electrode. It was found that the promoter effect is related to the amount of PVP at the gold electrode. From our results, it can be seen that the nitrogen element in the polymer is important for accelerating the electron transfer of cytochrome c.
Resumo:
The intrinsic viscosities of poly(ethylene oxide)-poly(vinyl acetate) blends (PEO-PVA) have been measured in chloroform as a function of molecular weights of blend components and compositions. The interaction parameters Delta b obtained from the modified Krigbaum and Wall theory and the differences between the intrinsic viscosities of polymer mixtures and the weight-average intrinsic viscosities of the two blend components were both used to characterize the extent of miscibility of the blend mixtures. (C) 1995 John Wiley and Sons, Inc.
Resumo:
A mediatorless H2O2 sensor based on coelectropolymerization of horse radish peroxidase (HRP) and o-phenylenediamine (o-PD) is described. The electrode responds to H2O2 in a few seconds and gives a current density of 73.3 nA 1 mu mol(-1) cm(-2) at -100 mV