327 resultados para chemical spots


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies, dipole moments, dissociation energies, electron affinities, and ionization potentials of NIX (XM = Y-Cd, X = F, Cl, Br, I) molecules in neutral, positively, and negatively charged ions were studied by density functional method, B3LYP. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides ionic component, covalent bonds are formed between the 4d transition metal s, d orbitals, and the p orbital of halogen. For both neutral and charged molecules, the fluorides have the shortest bond distance, iodides the longest. Although the opposite situation is observed for vibrational frequency, that is, fluorides have the largest value, iodides the smallest. For neutral and anionic species, the dissociation energy tends to decrease with the increasing atomic number from Y to Cd, suggesting the decreasing or weakening of the bond strength. For cationic species, the trend is observed from Y to Ag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bulk moduli of some superhard materials were calculated by using the chemical bond method. For simple crystals, such as diamonds, c-BN, SiC, Si, BP, and Ge, the calculated results agree with experimental and theoretical values. For crystals of complex structure, such as beta-BC2N crystal and various structural C3N4 crystals, the results indicate that their bulk moduli are large, but do not exceed that of diamond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relation between the lattice energies and the bulk moduli on binary inorganic crystals was studied, and the concept of lattice energy density is introduced. We find that the lattice energy densities are in good linear relation with the bulk moduli in the same type of crystals, the slopes of fitting lines for various types of crystals are related to the valence and coordination number of cations of crystals, and the empirical expression of calculated slope is obtained. From crystal structure, the calculated results are in very good agreement with the experimental values. At the same time, by means of the dielectric theory of the chemical bond and the calculating method of the lattice energy of complex crystals, the estimative method of the bulk modulus of complex crystals was established reasonably, and the calculated results are in very good agreement with the experimental values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, five Pt3Sn1/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt3Sn1P2/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt3Sn1/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm(-2) that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three kinds of organically modified Na+-montmorillonites (OMMTs), including two kinds of octadecylammonium modified montmorillonite with different contents of octadecylammonium and a kind of sodium dodecylsulfonate (SDSo) modified montmorillonite, were used to prepare polyamide 12 (PA12)/OMMT nanocomposites. Effects of the modifiers on degradation and fire retardancy of PA12/OMMT nanocomposites were investigated. Acid sites formed in cationic surfactant modified MMT via Hoffman decomposition could accelerate degradation of PA12 at high temperature. However, catalytic effect of the acid sites on carbonization of the degradation products promoted char barrier formation, which reduced heat release rate (HRR). Higher content of cationic surfactant in OMMT is beneficial to fire retardancy of PA12 nanocomposites and the dispersion states of OMMT have assistant effects. In contrast, Na+-montmorillonite (Na-MMT) and anionic surfactant modified MMT (a-MMT) could not form acid sites on the MMT layers; in this case, fire retardancy of PA12/Na-MMT appears to have no improvement and PA12/a-MMT appears to have limited improvement.