404 resultados para Voltammetric determination
Resumo:
The use of interlaminar fracture tests to measure the delamination resistance of unidirectional composite laminates is now widespread. However, because of the frequent occurrence of fiber bridging and multiple cracking during the tests, it leads to artificially high values of delamination resistance, which will not represent the behavior of the laminates. Initiation fracture from the crack starter, on the other hand, does not involve bridging, and should be more representative of the delamination resistance of the composite laminates. Since there is some uncertainty involved in determining the initiation value of delamination resistance in mode I tests in the literature, a power law of the form G(IC) = A.DELTA alpha(b) (where G(IC) is mode I interlaminar fracture toughness and DELTA alpha is delamination growth) is presented in this paper to determine initiation value of mode I interlaminar fracture toughness. It is found that initiation values of the mode I interlaminar fracture toughness, G(IC)(ini), can be defined as the G(IC) value at which 1 mm of delamination from the crack starter has occurred. Examples of initiation values determined by this method are given for both carbon fiber reinforced thermoplastic and thermosetting polymers.
Resumo:
A glassy carbon electrode coated with an electrodeposited film of mixed-valent cobalt oxide/cyanocobaltate (Co-O/CN-Co) enabled hydrazine compounds to be catalytically oxidized at the greatly reduced overpotential and in a wide operational pH range (pH 2.0-7.0). Electrocatalytic activity at the Co-O/CN-Co modified electrode was evaluated with respect to solution pH, film thickness, supporting electrolyte ions, potential scan rate, operating potential, concentration dependence and other variables. The Co-O/CN-Co film electrode was completely compatible with a conventional reversed-phase liquid chromatographic (RP-LC) system. Practical RP-LC amperometric detection (RP-LCEC) of hydrazines was performed. A dynamic linear response range over three orders of magnitude and a detection limit at the pmol level were readily obtained. The Co-O/CN-CO film electrode exhibited excellent electrocatalytic stability in the flowing streams.
Resumo:
Two M(n+)-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol systems for the simultaneous determination of the valence states of Cr and Fe using factor analysis were studied. (1) At pH 4.0, Cr(III) and Cr(VI) react with the reagent to form stable complexes and a slight difference in the wavelengths of maximum absorption (lambda(max.)) between the two complexes is observed when the sodium lauryl sulfate, which also acts as a solubilizing and sensitizing agent, is added, viz., 590 nm for Cr(III) and 593 nm for Cr(VI) complexes. (2) In the presence of ethanol, both Fe(II) and Fe(III) form 1:2 complexes with the reagent at pH 2.5-3.5 and the lambda(max.) of the Fe(II) and Fe(III) complexes is at 557 and 592 nm, respectively. In the target transformation factor analysis, the K coefficients calculated from the standard mixtures by classical least-squares analysis and a non-zero intercept added to each wavelength are used as the target vector instead of the pure component standards; this can decrease the analysis errors introduced by the interaction between the two species and by deviations from Beer's law.
Resumo:
The rapid scan spectrometer was used to determine the heterogeneous electron transfer rate parameters for the oxidation of Biliverdin in DMF by single potential step thin layer spectroelectrochemical techniques and yielded an average formal heterogeneous electron transfer rate constant K(s, h)0' = 2.45 (+/-0.12) x 10(-4) cm s-1, electrochemical transfer coefficient alpha = 0.694+/-0.008. The oxidation process of Biliverdin was also studied and the formal potential E0 = 0.637 V (vs. Ag/AgCl) was obtained.
Resumo:
A general characteristic of the electrochemical process coupling with a homogeneous catalytic reaction at an ultramicroelectrode under steady state is described. It was found that the electrochemical process coupling with homogeneous catalytic reaction has a similar steady state voltammetric wave at an ultramicroelectrode with arbitrary geometry. A method of determination for the kinetic constant of homogeneous catalytic reaction at an ultramicroelectrode with arbitrary geometry is proposed.
Resumo:
The possibility of determining the rate constant of a catalytic reaction using a parallel incident spectroelectrochemical cell was investigated in this work. Various spectroelectrochemical techniques were examined, including single-potential-step chronoabsorptometry, single-potential-step open-circuit relaxation chronoabsorptometry and double-potential-step chronoabsorptometry. The values determined for the kinetics of the ferrocyanide-ascorbic acid system are in agreement with the reported values. The parallel incident method is much more sensitive than the normal transmission method and can be applied to systems which have smaller molar absorptivities, larger rate constants or lower concentrations.
Resumo:
Langmuir-Blodgett (LB) films of (p-carboxyphenoxy)-tri(2,4-di-tert-pentyl phenoxy)phthalocyanine copper(II) (asyCuPc) are prepared; the associated forms of the compound in chloroform solution and the particular orientation of asyCuPc molecular macrocycles in LB films is determined by polarized UV-VIS.
Resumo:
The behaviour of the electroplated copper film electrode on tin oxide/glass or glassy carbon surface was studied in potassium hydroxide medium by cyclic voltammetry and in situ transmission spectroelectrochemistry. The results indicate that the electroplated copper film electrode is similar to a copper electrode and cyclic voltammetry with this electrode affords more resolution. The anodic peaks were found to correspond successively to the adsorption of oxygen, the formation of a surface layer of Cu2O, the formation of a surface layer of Cu(OH)2 or CuO and formation of a thick multilayer film of CuO. This is the first time it has been proposed that a surface layer of Cu(OH)2 or CuO is formed from the oxidation of the surface layer of Cu2O. Similarly, a clear interpretation is presented that the cathodic peaks correspond successively to the reduction of CuO to Cu2O, the reductions of Cu2O to Cu and the soluble Cu(II) species to Cu. On the other hand, a shoulder peak related to the chemical transformation of Cu(OH)2 to CuO was first observed.
Resumo:
A novel Eastman-AQ/Ni(II) chemically modified electrode (CME) produced by "double coating step" deposition of a poly(ester sulphonic acid) polymer film and Ni2+-containing crystalline species onto glassy carbon instead of a metallic nickel electrode exhibited stable electrocatalytic oxidation of numerous alpha-hydrogen compounds including carbohydrates, amines and amino acids. In cyclic voltammetry, the electrocatalysis appeared with an irreversible anodic wave at +0.55 V (vs. Ag/AgCl). The CME was adapted for constant-potential amperometric detection of these compounds in flow injection analysis. Using the CME, the linear response concentration range was between 1.0 x 10(-5) and 5.0 x 10(-2) mol/l and the detection limit was 5.0 x 10(-6) mol/l for glucose. The stability of the CME was adequate for routine quantitative application.
Resumo:
The values of k and alpha in the Mark-Houwink equation have been determined for chitosans with different degrees of deacetylation (DD) (69, 84, 91 and 100% respectively), in 0.2 M CH3COOH/0.1 M CH3COONa aqueous solution at 30-degrees-C by the light scattering method. It was shown that the values of alpha-decreased from 1.12 to 0.81 and the values of k increased from 0.104 x 10(-3) to 16.80 x 10(-3) ml/g, when the DD varied from 69 to 100%. This is due to a reduction of rigidity of the molecular chain and an increase of the electrostatic repulsion force of the ionic groups along the polyelectrolyte chain in chitosan solution, when the DD of chitosan increases gradually.
Resumo:
LnCL3 reacts with NaC5H5 and K2C8H8 to yield the complexes (eta-5-C5H5)Ln(eta-8-C8H8).nTHF (Ln = Pr, Nd, n = 2; Ln = Gd, n = 1) and LnCl3 reacts with KC9H7 and K2C8H8 to yield the complexes (eta-5-C9H7)Ln(eta-8-C8H8).2THF (Ln = Pr, Nd; eta-5-C9H7 = indenyl); crystallography reveals (eta-5-C5H5)Pr(eta-8-C8H8).2THF and (eta-5-C9H7)Pr(eta-8-C8H8).2THF not to possess the parallel ring sandwich structure.
Resumo:
The at constants of catalytic reaction of ferrocyanide ascorbic acid and ferro cyanide histidine system were determined by transmitted spectroelectrochemistry using a group of cyclindrical microelectrodes, It is the first time to find that the reaction can still be considered as the pseudo first order reaction when tilt concentration of ascorbic acid or histidine is close to and even slightly lower than the concentration of ferrocyanide. The determined rate constants are in agreement with the reported values, A reasonable explanation was given,