311 resultados para Partial oxidation of methane


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel cells are recognized as the most promising new power generation technology, but hydrogen supply is still a problem. In our previous work, we have developed a LiLaNiO/gamma-Al2O3 catalyst, which is excellent not only for partial oxidation of hydrocarbons, but also for steam reforming and autothermal reforming. However, the reaction needs pure oxygen or air as oxidant. We have developed a dense oxygen permeable membrane Ba0.5Sr0.5Co0.8Fe0.2O3 which has an oxygen permeation flux around 11.5 ml/cm(2) min at reaction conditions. Therefore, this work is to combine the oxygen permeable membrane with the catalyst LiLaNiO/gamma-Al2O3 in a membrane reactor for hydrogen production by mixed reforming of heptane. Under optimized reaction conditions, a heptane conversion of 100%, a CO selectivity of 91-93% and a H-2 selectivity of 95-97% have been achieved. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural features and catalytic properties of Pt-Sn/CeO2 catalysts prepared by modified polyol method were extensively investigated for the complete oxidation of ethanol. CO chemisorption, TPR, DTA and XPS measurements identically indicated that the electronic configuration of Pt by Sn as well as the formation of PtSn alloy were the key factors in determining the nature of the active sites, A strong Pt/Sn atomic ratio dependence of catalytic perfortmances was observed. which was explained in terms of the change., in the Surface structure of metal phases and the electronic Pt-Sn interaction. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive study of the low-temperature oxidation of CO was conducted over Pd/TiO2, Pd/CeO2, and Pd/CeO2-TiO2 pretreated by a series of calcination and reduction processes. The catalysts were characterized by N-2 adsorption, XRD, H-2 chemisorption, and diffuse-reflectance infrared Fourier transform spectroscopy. The results indicated that Pd/CeO2-TiO2 has the highest activity among these catalysts, whether in the calcined state or in the reduced state. The activity of all of the catalysts can be improved significantly by the pre-reduction, and it seems that the reduction at low temperature (LTR. 150 degrees C) is more effective than that at high temperature (HTR, 500 degrees C), especially for Pd/CeO2 and Pd/TiO2. The catalysts with various supports and pretreatments are also different in the reaction mechanisms for CO oxidation at low temperature. Over Pd/TiO2, the reaction may proceed through a surface reaction between the weakly adsorbed CO and oxygen (Langmuir-Hinshelwood). For Ce-containing catalysts, however, an alteration of reaction mechanism with temperature and the involvement of the oxygen activation at different sites were observed, and the light-off profiles of the calcined Pd/CeO2 and Pd/CeOi-TiO2 show a distortion before CO conversion achieves 100%. At low temperature, CO oxidation proceeds mainly via the reaction between the adsorbed CO on Pd-0 sites and the lattice oxygen of surface CeO2 at the Pd-Ce interface, whereas at high temperature it proceeds via the reaction between the adsorbed CO and oxygen. The high activity of Pd/CeO2-TiO2 for the low-temperature CO oxidation was probably due to the enhancements of both CO activation, caused by the facilitated reduction of Pd2+ to Pd-0, and oxygen activation, through the improvement of the surface oxygen supply and the oxygen vacancies formation. The reduction pretreatment enhances metal-support interactions and oxygen vacancy formation and hence improves the activity of CO oxidation. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co3O4 nanocrystals with average particle sizes of 30 and 50 run were synthesized using cobalt nitrate as precursor, and were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. Catalytic oxidation of cyclohexane with molecular oxygen was studied over Co3O4 nanocrystals. These catalysts showed obviously higher activities as compared to Co3O4 prepared by the conventional methods, Co3O4/Al2O3, or homogeneous cobalt catalyst under comparable reaction conditions. The 89.1% selectivity to cyclohexanol and cyclohexanone at 7.6% conversion of cyclohexane was realized over 50 nm sized Co3O4 nanocrystals at 393 K for 6 h. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A single-pass process with the combination of oxidative coupling (OCM) and dehydro-aromatization (MDA) for the direct conversion of methane is carried out. With the assistance of the OCM reaction over the SrO-La2O3/CaO catalyst loaded on top of the catalyst bed, the duration of the dehydro-aromatization reaction catalyzed by a 6Mo/HMCM-49 catalyst shows a significant improvement, and. the initial deactivation rate constant of the overall process revealed about 1.5 x 10(-6) s(-1). Up to 72 h on stream, the yield of aromatics was still maintained at 5.0% with a methane conversion of 9.6%, which is obviously higher than that reported for the conventional MDA process with single catalyst. Upon the TPR results, this wonderful enhancement would be attributed to an in-situ formation of CO2 and H2O through the OCM reaction, which serves as a scavenger for actively removing the coke formed during the MDA reaction via a reverse Boudouard reaction and the water gas reaction as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted the liquid phase oxidation of toluene with molecular oxygen over heterogeneous catalysts of copper-based binary metal oxides. Among the copper-based binary metal oxides, iron-copper binary oxide (Fe/Cu = 0.3 atomic ratio) was found to be the best catalyst. In the presence of pyridine, overoxidation of benzaldehyde to benzoic acid was partially prevented. As a result, highly selective formation of benzaldehyde (86% selectivity) was observed after 2 h of reaction (7% conversion of toluene) at 463 K and 1.0 MPa of oxygen atmosphere in the presence of pyridine. These catalytic performances were similar or better than those in the gas phase oxidation of toluene at reaction temperatures higher than 473 K and under 0.5-2.5 MPa. It was suggested from competitive adsorption measurements that pyridine could reduce the adsorption of benzaldehyde. At a long reaction time of 4 It, the conversion increased to 25% and benzoic acid became the predominant reaction product (72% selectivity) in the absence of pyridine. The yield of benzoic acid was higher than that in the Snia-Viscosa process, which requires corrosive halogen ions and acidic solvents in the homogeneous reaction media. The catalyst was easily recycled by simple filtration and reusable after washing and drying.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pd-supported on WO3-ZrO2 (W/Zr atomic ratio=0.2) calcined at 1073 K was found to be highly active and selective for gas-phase oxidation of ethylene to acetic acid in the presence of water at 423 K and 0.6 MPa. Contact time dependence demonstrated that acetic acid is formed via acetaldehyde formed by a Wacker-type reaction, not through ethanol by hydration of ethylene.