310 resultados para PLASMA ANTIOXIDANTS
Resumo:
The hyphenated technique of high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) was applied to the simultaneous determination of five organotin compounds (trimethyltin, dibutyltin, tributyltin, diphenyltin and triphenyltin) in seawater samples. Agilent TC-C18 column was used for the separation, the mobile phase of HPLC was CH3CN : H2O: CH3COOH=65 : 23 : 12 (phi), 0.05% TEA, and pH value was adjusted to 3.0 by diluent ammonia. The flow rate was 0.6 mL . min(-1). Five mixed organotin compounds in a mix standard solution from 100 to 0.5 mu g . L-1 were applied for the method assessment. The experimental results indicate that the correlation coefficient of calibration curves (R-2) for each organotin compound was over 0.998 and the detection limits of the five organotin compounds were lower than 3 ng . L-1. Different mixed organic solvents including dichloromethane or toluene were used for extraction of organotin and the extraction condition of organotin from seawater was optimized. The 100 mL seawater acidized by hydrochloric acid was extracted by 10 mL carbon dichloride (CH2Cl2) with 2% tropolone for 10 min twice. Extracted organic solvents were mixed And blown to one drop by nitrogen with the rate of 1.7 mL . min(-1), then 1 mL acetonitrile was added to the drop for redissolving the organotin compounds. Finally, the mixed redissolution was filtered by 0.22 mu m organic filter membrane before analysis. it was found that the only organotin compound in seawater was triphenyltin (TPHT) and the content was 53.2 ng . L-1. The recoveries test from the standard addition for diphenyltin (DPHT), dibutyltin (DBT), tributyltin (TBT) and triphenyltin (TPHT) were over 80%. However, the recovery for trimethyltin (TMT) was relatively low and the value was 50%. The reason might be attributed to the decomposition or adsorption of those compounds during the extraction procedure. Further study on this subject is in progress.
Resumo:
The hyphenated technique of high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry(HPLC-ICP-MS) was applied to the simultaneous determination of five organotin compounds in the shellfish samples. Agilent TC-C-18 column was selected, mobile phase of the HPLC was CH3CN:H2O: CH3COOH = 65:23:12 (V/V), 0. 05% TEA, pH = 3.0 at flow rate 0.4 mL/min. Five mixed organotin standards from 100 mu g/L to 0. 5 mu g/L was used for the method evaluation. The experimental results indicate that the linearity (R-2) for each compound was over 0.998. The shellfish samples were treated by supersonic extraction with mobile phase for 30min. Four organotin compounds including dibutyltin (DBT), tributyltin (TBT), diphenyltin (DphT) and triphenyltin (TPhT) in shellfish samples were detected with method mentioned above. It was found that the domain compounds in the samples were tributyltin (TBT) and triphenyltin (TPhT). The recoveries test from the standard addition for trimethyltin (TMT tributyltin (TBT), and triphenyltin (TPhT) were, over 80%. However, the recoveries for diphenyltin (DPhT) and dibutyltin (DBT) were relatively low, 37.3% and 75.2% respectively. The reason might be attributed to the decomposition of those compounds during the extraction procedure. The further study on this subject is under the progress.
Resumo:
An LC method for the determination of 20 amino acids (AAs), using 1,2-Benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) as fluorescent labeling reagent, has been validated and applied for the analysis of AAs in rat plasma at three different states concerning exercise physiology. Identification of AA derivatives was carried out by LC-MS with electrospray ion (ESI), and the MS-MS cleavage mode of the representative tyrosine (Tyr) derivative was analyzed. Gradient elution on a Hypersil BDS C-18 column gave good separation of the derivatives. Excellent linear responses were observed and good compositional data could be obtained from as little as 50-200 mu L of plasma samples. The contents of 20 AAs in rat plasma of three groups (24 rats, group A: quiet state, group B: at exercising exhaust, group C: 12 h after exercising exhaust) exhibited evident difference corresponding to the physiological states. Facile BCEOC derivatization coupled with LC-FLD-ESI-MS analysis allowed the development of a highly sensitive method for the quantitative analysis of trace level of AAs from plasma or other biochemical samples.
Resumo:
A resurgence of interest in the human plasma proteome has occurred in recent years because it holds great promise of revolution in disease diagnosis and therapeutic monitoring. As one of the most powerful separation techniques, multidimensional liquid chromatography has attracted extensive attention, but most published works have focused on the fractionation of tryptic peptides. In this study, proteins from human plasma were prefractionated by online sequential strong cation exchange chromatography and reversed-phase chromatography. The resulting 30 samples were individually digested by trypsin, and analyzed by capillary reversed-phase liquid chromatography coupled with linear ion trap mass spectrometry. After meeting stringent criteria, a total of 1292 distinct proteins were successfully identified in our work, among which, some proteins known to be present in serum in < 10 ng/mL were detected. Compared with other works in published literatures, this analysis offered a more full-scale list of the plasma proteome. Considering our strategy allows high throughput of protein identification in serum, the prefractionation of proteins before MS analysis is a simple and effective method to facilitate human plasma proteome research.
Resumo:
An interface of chip-based capillary electrophoresis (CE)-inductively coupled plasma-atomic emission spectrometry (ICP-AES) that is based on cross-flow nebulization has been developed. A polydimethylsiloxane (PDMS) CE-chip with conventional cross channel layout was used. A stainless steel tube was placed orthogonal to the exit of the CE separation channel for cross flow nebulization. A supplementary flow of buffer solution at the channel exit was used to improve nebulization efficiency. Two capillaries were inserted into the CE chip near the inlet of the separation channel for sample and buffer solution injection. Syringe pumps were used to manipulate the flow rate and flow direction of the sample, buffer, and supplementary buffer solution. Peak broadening due to the shape (bulb and tube-shaped) and size of the spray chambers was studied. The smaller tube-shaped spray chamber was used because of smaller peak broadening effect due to aerosol transport. The nebulization and transport efficiency of the CE-ICP interface was approximately 10%. Ba2+ and Mg2+ ions were eluted from the CE-chip within 30 s. Resolution of the Ba2+ and Mg2+ peaks was 0.7 using the chip-based CE-ICP-AES system.