428 resultados para Microstructure fabrication


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uniform Fe3O4 octahedral microcrystals with perfect appearance have been successfully synthesized by a Triton X100-assisted polyol process. During the polyols process for the preparation of Fe3O4 octahedra. the introduction of Triton X100 decreases significantly the needed concentration of NaOH. The results show that Fe3O4 octahedra are composed of eight triangular sheets, which are equilateral triangles. The edge size of Fe3O4 octahedron is about 4 mu m. The magnetic properties of Fe3O4 octahedral particles were evaluated on a SQUID magnetometer at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation behavior of polyethylene/modified montmorillonites with polymerizable surfactant (PE/P-MMT) nanocomposite with strong interfacial interaction was studied by means of morphology observation and X-ray scattering measurements. The orientation of PE chains was accompanied by the orientation of well-dispersed MMT platelets due to the presence of strong interfacial interaction, and both of the orientations were parallel to the deformation direction. The high degree of orientation of MMT platelets and PE chains resulted from the synergistic movement of PE matrix and MMTs, which originated from the presence of a network-like structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure and mechanical properties of beta-nucleated iPP before and after being annealed at different temperatures (90-160 degrees C) have been analyzed, Annealing induced different degrees of variation in fracture toughness of beta-nucleated iPP samples. namely, slight enhancement at relatively low annealing temperatures (< 110 degrees C) and great improvement at moderate temperatures (120-130 degrees C), whereas dramatic deterioration at relatively high temperatures ( > 140 degrees C) has been observed. The variation of fracture toughness of beta-nucleated iPP is observed to be dependent on the content of beta-NA. Experiments, including scanning electronic microscope (SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and dynamic mechanical analysis (DMA), are performed to study the variations of microstructures as well as the toughening mechanism of the beta-nucleated iPP after being annealed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, two industrial bimodal high density polyethylene resins, resin A and resin B having similar molecular weight (M-w), molecular weight distribution (M-wD), and short-chain branching (SCB) content but different mechanical properties, were fractionated through cross-fractionation. The fractions were further, characterized by GPC, C-13 NMR, DSC AND FT IR techniques. These two resins were firstly fractionated into two franctions, i.e. high-temperature and low temperature fractions, via preparative solution crystallization fractionation. Resin A with much better mechanical properties contains more high-temperature fractions with longer crystalizable sequences. The SCB content in the low temperature fraction of resin A is lower than the of resin B. Both low-temperature fractions were then further fractionated using solvent gradient fractionation (SGF). The characterization of SGF fraction indicates that most of the branches fall into the high molecular weight chain in both low-temperature fractions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three Polypropylene/Poly(ethylene-co-propylene) (PP/EPR) in-reactor alloys produced by a two-stage slurry/gas polymerization had different ethylene contents and mechanical properties, which were achieved by controlling the copolymerization time. The three alloys were fractionated into five fractions via temperature rising dissolution fractionation (TRDF), respectively. The chain structures of the whole samples and their fractions were analyzed using high-temperature gel permeation chromatography (GPC), Fourier transform infrared (FT-IR), C-13 nuclear magnetic resonance (C-13 NMR), and differential scanning calorimetry (DSC) techniques. These three in-reactor alloys mainly contained four portions: ethylenepropylene random copolymer (EPR), ethylene-propylene (EP) segmented and block copolymers, and propylene homopolymer. The increased copolymerization time caused the increased ethylene content of the sample. The weight percent of EPR, EP segmented and block copolymer also became higher.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, rapid fabrication of Au nanoparticle (Au NP) films has been simply achieved by alternate adsorption of citrate-stabilized Au NPs and poly(diallyldimethylammonium chloride) with the aid of centrifugal force. In contrast to conventional electrostatic assembly, we carried out the assembly process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force can be imposed on Au NPs. Scanning electron microscopy and cyclic voltammetry were employed to characterize the assembly procedure and the thus-prepared thin solid films. Our results demonstrate that centrifugal force can promote the assembly of Au NPs and therefore enable the rapid fabrication of functional Au NP films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method to synthesize Fe3O4 core/Au shell submicrometer structures with very rough surfaces on the nanoscale is reported. The Fe3O4 particles were first modified with uniform polymers through the layer-by-layer technique and then adsorbed a lot of gold nanoseeds for further Au shell formation. The shell was composed of a large number of irregular nanoscale An particles arranged randomly, and there were well-defined boundaries between these Au nanoparticles. The Fe3O4 core/Au shell particles showed strong plasmon resonance absorption in the near-infrared range, and can be separated quickly from solution by an external magnet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel microstructured and pH sensitive poly(acryliac acid-co-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) (P(AA-co-HEMA)/PVA) interpenetrating network (IPN) hydrogel films were prepared by radical precipitation copolymerization and sequential IPN technology. The first P(AA-co-HEMA) network was synthesized in the present of IPN aqueous solution by radical initiating, then followed by condensation reaction (Glutaraldehyde as crosslinking agent) within the resultant latex, it formed multiple IPN microstructured hydrogel film. The film samples were characterized by IR, SEM and DSC. Swelling and deswelling behaviors and mechanical property showed the novel multiple IPN nanostuctured film had rapid response and good mechanical property. The IPN films were studied as controlled drug delivery material in different pH buffer solution using cationic compound, crystal violet as a model drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-dimensional CaMoo(4):Ln(3+) (Ln = Eu, Tb, Dy) nanofibers have been prepared by a combination method of sol-gel and electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and low voltage cathodoluminescence (CL) as well as kinetic decays were used to characterize the resulting samples. SEM and TEM analyses indicate that the obtained precursor fibers have a uniform size, and the as-formed CaMoO4:Ln(3+) nanofibers consist of nanoparticles. Under ultraviolet excitation, the CaMoO4 samples exhibit a blue-green emission band with a maximum at 500 nm originating from the MoO42- groups. Due to an efficient energy transfer from molybdate groups to dopants, CaMoO4:Ln(3+) phosphors show their strong characteristic emission under ultraviolet excitation and low-voltage electron beam excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By incorporating two phosphorescent dyes, namely, iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C-2']picolinate (Flrpic) for blue emission and bis(2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1 H-benzoimidazol-N,C-3) iridium(acetylacetonate) ((fbi)(2)Ir(acac)) for orange emission, into a single-energy well-like emissive layer, an extremely high-efficiency white organic light-emitting diode (WOLED) with excellent color stability is demonstrated. This device can achieve a peak forward-viewing power efficiency of 42.5 lm W-1, corresponding to an external quantum efficiency (EQE) of 19.3% and a current efficiency of 52.8 cd A(-1). Systematic studies of the dopants, host and dopant-doped host films in terms of photophysical properties (including absorption, photoluminescence, and excitation spectra), transient photoluminescence, current density-voltage characteristics, and temperature-dependent electroluminescence spectra are subsequently performed, from which it is concluded that the emission natures of Flrpic and (fbi)(2)Ir(acac) are, respectively, host-guest energy transfer and a direct exciton formation process. These two parallel pathways serve to channel the overall excitons to both dopants, greatly reducing unfavorable energy losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk novel cemented carbides (W1-xAlx)C-10.1 vol% Co (x = 0.2, 0.33, 0.4, 0.5) are prepared by mechanical alloying and hot-pressing sintering. Hot-pressing (HP) is used to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have good mechanical properties compared with WC-Co. The density and operating cost of the novel material is much lower than a WC-Co system. The material is easy to process and the processing leads to nano-scaled, rounded, particles in the bulk material. The hardness of (W1-xAlx)C-10.1 vol% Co (x = 0.2, 0.33, 0.4, 0.5) hard material is 20.37, 21.16, 21.59 and 22.16 GPa, and the bending strength is 1257, 1238, 1211 and 1293 MPa, with the aluminum content varying from 20% to 50%. The relationship between the microstructure and the mechanical properties of the novel hard alloy is also discussed.