457 resultados para LLDPE Blends
Resumo:
We report that the brittle-ductile transition of polymers induced by temperature exhibits critical behavior. When t close to 0, the critical surface to surface interparticle distance (IDc) follows the scaling law: IDc proportional to t(-v) where t = 1 - T/T-BD(m) (T and T-BD(m) are the test temperature and brittle-ductile transition temperature of matrix polymer, respectively) and v = 2/D. It is clear that the scaling exponent v only depends on dimension (D). For 2, 3, and 4 dimension, v = 1, 2/3, and 1/2 respectively. The result indicates that the ID, follows the same scaling law as that of the correlation length (xi), when t approach to zero.
Resumo:
The dewetting behavior of polystyrene (PS) film on poly(methyl methacrylate) (PMMA) sublayer was investigated by changing the short-range roughness of the PMMA sublayer systemically. When the bilayer film was heated to the temperature above both Tgs, the protuberances formed in both layers to reduce the system energy. By tracing the dewetting process of the PS up-layer, the dewetting velocity was found to increase with the roughness of the sublayer.
Resumo:
Infrared light-emitting diodes possess potential applications in optical communication and safety detection. in this paper, we fabricated near-infrared light-emitting diodes possess potential applications in optical communication and safety detection. in this paper, we fabricated near-infrared polymer light-emitting diode employing a commercial near-infrared (NIR) organic dye as an emissive dopant dispersed within poly(N-vinylcarbazole) (PVK) by spin-casting method. The used device structure was indium tin oxide/3,4-polyethylene-dioxythiophene-polystyrene sulfonate/PVK: NIR dye/Al.
Resumo:
We fabricated the interdiffused organic photovoltaic devices, which composed of poly (2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylenevinylene) (MEH-PPV) and buckminsterfullerene (C-60), by annealing treatment. After annealing, C60 diffused into the MEH-PPV layer, in consequence, MEH-PPV/C-60 interfacial area was increased and their interface became closer proximity. The results lead to reduce reverse-bias saturation current (J(s)), and increase the open-circuit voltage (V-OC) and the short-circuit current (J(SC)).
Resumo:
We have investigated the effects of thermal annealing before and after cathode deposition on poly(3-hexylthiophene)(P3HT)/[6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend photovoltaic cells with different cathode buffer layers. The introduction of cathode buffer layer such as lithium fluoride (LiF) and calcium oxide (CaO) in pre-annealing cells can increase the open-circuit voltage (V-oc) and the power conversion efficiency (PCE). Post thermal annealing after cathode deposition further enhanced the PCE of the cells with LiF/Al cathode.
Resumo:
The multiphase morphology of high impact polypropylene (hiPP), which is a reactor blend of polypropylene (PP) with ethylene-propylene copolymer, was investigated by transmission electron microscopy, selected area electron diffraction, atomic force microscopy, and field-emission scanning electron microscopy techniques in conjunction with an analysis of the hiPP composition and chain structure based on solvent fractionation, C-13-NMR, and differential scanning calorimetry measurements.
Resumo:
P-type copper phthalocyanine (CuPc) and n-type hexadecafluorophthalocyanina-tocopper (F16CuPc) polycrystalline films were investigated by Kelvin probe force microscopy (KPFM). Topographic and corresponding surface potential images are obtained simultaneously. Surface potential images are related with the local work function of crystalline facets and potential barriers at the grain boundaries (GBs) in organic semiconductors. Based on the spatial distribution of surface potential at GBs, donor- and acceptor-like trapping states in the grain boundaries (GBs) of p-CuPc and n-F16CuPc films are confirmed respectively.
Resumo:
Ultrafine full-vulcanized polybutadiene rubber (UFBR) in particle sizes of ca. 50-100 nm has been used for modifying mechanical and processing performances of polypropylene (PP), and PP-g-maleic anhydride (PP-MA) has been used as a compatibilizer for enhancing the interfacial adhesion between the two components. The results show that PP/UFBR possesses rheological behaviors such as highly branched PP when UFBR content in blends reaches 10 wt%, while in contrast, the much low content of UFBR combining small amount of PP-MA endows the material with rheological characteristics of high melt strength materials like highly branched PP.
Resumo:
By reducing the attraction between the platelets of octaclecylammonium chloride modified montmorillonite (OMMT-C18) via pre-intercalation of maleated polypropylene (MAPP), OMMT-C18 was exfoliated in thermoplastic polyurethane (TPU) matrix during melt-mixing. Wide angle X-ray diffraction, transmission electron microscopy and thermogravimetric analysis were used to investigate the microstructure of TPU nanocomposites. Three factors (including introducing sequence, the kind and the content of MAPP) showed important effects on the dispersion degree of OMMT-C18 in TPU matrix. The results confirmed that the pre-intercalation of MAPP was necessary for the exfoliation of OMMT-C18; however, the role of MAPP in TPU nanocomposites was different from that in polypropylene nanocomposites.
Resumo:
Effects of multiwalled carbon nanotubes (MWCNTs) and Ni2O3 on the flame retardancy of linear low density polyethylene (LLDPE) have been studied. A combination of MWCNTs and Ni2O3 showed a synergistic effect in improving the flame retardancy of LLDPE compared with LLDPE composites containing MWCNTs or Ni2O3 alone. As a result, the peak value of heat release rate measured by cone calorimeter was obviously decreased in the LLDPE/MWCNTs/Ni2O3 Composites. According to the results from rheological tests, carbonization experiments, and structural characterization of residual char, the improved flame retardancy was partially attributed to the formation of a networklike structure due to the good dispersion of MWCNTs in LLDPE matrix, and partially to the carbonization of degradation products of LLDPE catalyzed by Ni catalyst originated from Ni2O3, More importantly, both viscoelastic characteristics and catalytic carbonization behavior of LLDPE/MWCNTs/Ni2O3 composites acted in concert to result in a synergistic effect in improving the flame retardancy.
Resumo:
Three low bandgap conjugated polymers, i.e., PDTPBT-C8, PDTPBT-C6 and PDTPBT-C5, which consist of alternating N-alkyl dithieno[3,2-b: 2',3'-d] pyrrole and 2,1,3-benzothiadiazole units and carry 1-octylnonyl, 1-hexylheptyl and 1-pentylhexyl as side chains, respectively, were synthesized. These polymers show strong absorption in the wavelength range of 600-900 nm with enhanced absorption coefficient as the length of alkyl chain decreases. The film morphology of the polymers and 1-(3-methoxycarbonyl) propyl-1-phenyl-[6,6]-C-61 (PCBM) blends is also dependent on the alkyl chain length. As the length decreases, the film becomes more uniform and the domian size decreases from 400-900 nm for PDTPBT-C8 to similar to 50 nm for PDTPBT-C5.
Resumo:
A mathematical model of the chemical kinetics of silicone rubber Vulcanization is developed, with the thermal effects being computed using the increment method, and the hot Vulcanization process estimated with the finite element method. The results show that the reaction heat of rubber vulcanization is important for energy saving, and that a proper curing medium temperature is important when considering both vulcanization efficiency and vulcanizate uniformity. The results also indicate that increases in the forced convective heat transfer coefficient have no significant effect above a certain level. The validity of the numerical model is indirectly proven by comparison with existing data.
Resumo:
Banded spherulite patterns are simulated in three dimensions by means of a Coupled Logistic map lattice model. The patterns obtained by numerical calculation are consistent with those in experiments. The simulation results also indicate that the hand spacing is decreased with the increase of parameter mu in the Logistic map and increased with the increase of the coupling parameter e for cube lattices, and increased with the increase of the thickness of the lattice for polymer film, which is quite similar to the results in some experiments. Spiral pattern in three dimensions is also shown in this paper, which helps us understand the form of banded spherulite in polymers.
Resumo:
The effect of the hydrophobic properties of blocks B and C on the aggregate morphologies formed by ABC linear triblock copolymers in selective solvent was studied through the self-consistent field theory. Five typical micelles, such as core-shell-corona, hamburger-like, segmented-wormlike, were obtained by changing the hydrophobic properties of blocks B and C. The simulation results indicate that the shape and size of micelle are basically controlled by the hydrophobic degree of the middle block B, whereas the type of micelle is mainly determined by the hydrophobic degree of the end block C.
Resumo:
A series of red-light emitting electrophosphorescent polyfluorenes (PFs) with varying content of a quinoline-based iridium complex, (PPQ)(2)Ir(acac) (bis(2,4-diphenylquinolyl-N,C-2') iridium(acetylacetonate)), in the side chain are synthesized by Suzuki polycondensation. Because of the efficient Forster energy transfer from the PF main chain to (PPQ)(2)Ir(acac) and direct charge trapping on the complex, the electroluminescent emission from PF is nearly completely quenched, even though the amount of iridium complex I incorporated into the polymers is as low as 1 mol %. Based on a single-layer device configuration, a luminous efficiency of up to 5.0 cd A(-1) with a luminance of 2000 cd m(-2) and Commission Internationale de L'Eclairage coordinates of (0.63, 0.35) (x, y) is realized, which is far superior to that of previously reported red-light emitting PFs containing benzothiazole- and isoquinoline-based iridium complexes.