398 resultados para Grating coupling coefficient
Resumo:
IEECAS SKLLQG
Resumo:
Motivated by recent experimental observation of spin-orbit coupling in carbon nanotube quantum dots [F. Kuemmeth , Nature (London) 452, 448 (2008)], we investigate in detail its influence on the Kondo effect. The spin-orbit coupling intrinsically lifts out the fourfold degeneracy of a single electron in the dot, thereby breaking the SU(4) symmetry and splitting the Kondo resonance even at zero magnetic field. When the field is applied, the Kondo resonance further splits and exhibits fine multipeak structures resulting from the interplay of spin-orbit coupling and the Zeeman effect. A microscopic cotunneling process for each peak can be uniquely identified. Finally, a purely orbital Kondo effect in the two-electron regime is also predicted.
Resumo:
The properties of hadronic matter at beta equilibrium in a wide range of densities are described by appropriate equations of state in the framework of the relativistic mean field model. Strange meson fields, namely the scalar meson field sigma*(975) and the vector meson field sigma*(1020), are included in the present work. We discuss and compare the results of the equation of state, nucleon effective mass, and strangeness fraction obtained by adopting the TM1, TMA, and GL parameter sets for nuclear sector and three different choices for the hyperon couplings. We find that the parameter set TM1 favours the onset of hyperons most, while at high densities the GL parameter set leads to the most hyperon-rich matter. For a certain parameter set (e.g. TM1), the most hyperon-rich matter is obtained for the hyperon potential model. The influence of the hyperon couplings on the effective mass of nucleon, is much weaker than that on the nucleon parameter set. The nonstrange mesons dominate essentially the global properties of dense hyperon matter. The hyperon potential model predicts the lowest value of the neutron star maximum mass of about 1.45 M-sun to be 0.4-0.5 M-sun lower than the prediction by using the other choices for hyperon couplings.
Resumo:
The principle of particle coupling between horizontal and vertical directions in solenoid is presented. Further more, the method of decoupling can be obtained by using the coupling dynamic equations. 5000 particles are tracked under three conditions: CSRm doesn't contain solenoids, contains main solenoid and toroids, contains compensating solenoids. The results of the particle trace calculations show that the particles coupling between horizontal and vertical is very serious because of the existence of solenoids, and lot's of particals are lost. Another two solenoids which locate in the fit place can be used to decrease the coupling intensation. The method is proved to be useful by the trace calculations.
Resumo:
The direct reduction of SO2 to elemental sulfur in flue gas by the coupling of cold plasma and catalyst, being a new approach for SO2 reduction, was studied. In this process, CO2 can be disassembled to form CO, which acts as the reductant under the cold plasma. With the coupling of the cold plasma and the catalyst, sulfur dioxide was selectively reduced by CO to elemental sulfur with a byproduct of metal sulfate, e.g., FeSO4. In the present work, Fe2O3/gamma-Al2O3 was employed as the catalyst. The extent of desulfurization was more than 80%, and the selectivity of elemental sulfur is about 55%. The effects of water vapor, temperature, and the components of simulated flue gas were investigated. At the same time, the coupling of thermogravimetry and infrared method and a chemical analysis method were employed to evaluate the used catalyst. In this paper, we will focus on the discussion of the catalyst. The discussions of the detail of plasma will be introduced in another paper.
Resumo:
The paper presents a theoretical study of the dynamics of the H + HCl system on the potential energy surface (PES) of Bian and Werner (Bian, W.; Werner, H. -J., J. Chem. Phys. 2000, 112, 220). A time-dependent wave packet approach was employed to calculate state-to-state reaction probabilities for the exchanged and abstraction channels. The most recent PES for the system has been used in the calculations. Reaction probabilities have also been calculated for several values of the total angular momentum J > 0. Those have then been used to estimate cross sections and rate constants for both channels. The calculated cross sections can be compared with the results of previous quasiclassical trajectory calculations and reaction dynamics experimental on the abstraction channel. In addition, the calculated rate constants are in the reasonably good agreement with experimental measurement.