335 resultados para Grain Morphology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal behavior and morphology of blends prepared by solution casting of mixtures of chitosan and poly( ethylene oxide) were studied by means of differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The preliminary results indicate that both melting point and crystallinity depend on the composition of the blends, and that they exhibit minimum values when the blend contains 50% chitosan. From the prediction of melting point depression analysis, the compatibility of the blends shows a transition at this specific composition. This conclusion was further confirmed by observation of the morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miscibility and morphology of polyimide/polyimide blends, PEI-E/PTI-E(a)) and PBPI-E/IPTI-E(a)), have been studied by means of C-13 CPMAS NMR technique. The results indicate that PEI-E/PTI-E blends are miscible on a molecular level, but molecular aggregation exists in pure PBPI-E specimen as well as PBPI-E/PTI-E blends with high content of PBPI-E, which vanishes in the blends with high content of PTI-E. When the content of PBPI-E is higher than that of PTI-E, the addition of PTI-E to PBPI-E has almost no effect on the size of the PBPI-E rigid domains, but has a large effect on the populations of the PBPI-E rigid domains. It is the intermolecular charge-transfer interaction that plays a critical role in the miscibility of PEI-E/PTI-E and PBPI-E/PTI-E blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphologies of solution-cast films of iPP/aPP blends have been studied by means of electron microscopy and X-ray scattering techniques. Microscopic observation showed that solution-cast film of iPP consists of two kinds of structural regions, cross-hatched and lath-liked structures. The addition of small amount of aPP (less than or equal to 30%) into iPP did not change iPP's characteristic crystallization behavior. It is noticed that when the content of aPP in its blend was over 80%, iPP formed a very loosely woven-like network composed of very long lamellae with wide-angle lamellar branchings. The X-ray data showed that aPP did not cocrystallize with iPP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of a new phenolphthalein poly (ether sulfone) (PES-C) and a thermotropic liquid crystalline polymer (LCP) were prepared by melt-blending in a twin-screw extruder. Rheological properties, fracture toughness, K(IC), and morphology of the blends were

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(acrylonitrile-butadiene-styrene), polycarbonate (PC), and two types of antioxidants have been blended by an extruder twin screw. Notched Izod impact strength, tensile property, and melting flow index (MFI) were measured for the blends including diffe

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extended Goldman-Shen pulse sequence was used to observe indirectly the proton spin diffusion in the blends of polystyrene (PS) with poly(2,6-dimethyl-1,4-phenylene oxides) (PPO). The results indicate that the average distance between PS and PPO is less than 5 angstrom in the intimately mixed phase, but there are heterogeneous domains on a 100-angstrom scale. The data of spin relaxation of carbons, T1(C), for homopolymers and their blends suggest that there is a strong pi-pi electron conjugation interaction between the aromatic rings of PS and those of PPO, while the aromatic rings of PPO drive the aromatic rings of PS to move cooperatively. It is the cooperative motion that markedly improves the impact strength of PS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies using transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction showed correlations between the crystallization behavior of the polydimethylsiloxane (PDMS) block and the morphology of the block copolymer poly (butadiene-b-dimethylsiloxane) (PB-PDMS). When the PDMS component existed as spheres dispersed in a PB matrix, the crystallization rate of the PDMS block was lower than when the PDMS phase existed in rod or cylinder form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyoxypropylene glycol (PPG) (or castor oil) and toluene diisocyanate (TDI) were mixed, and the prepolymer polyurethane (PU) (I) was formed. Vinyl-terminated polyurethane (II) was prepared from (I), and hydroxyethyl acrylate, AB crosslinked polymers (ABCPs) were synthesized from (II) and vinyl monomers such as styrene, methyl methacrylate, vinyl acetate, etc. The dynamic mechanical properties and morphology of ABCPs were measured. The ABCPs based on PPG have double glass transition temperatures (T(g)) on the sigma-vs. temperature curves. They display a two-phase morphology with plastic components forming the continous phase and PU-rich domains forming the separated phase on the electron micrographs. Irregular shapes and a highly polydisperse distribution of PU-rich domain sizes were observed. The crosslink density of ABCPs has a notable effect on the morphology and properties. The average diameter of the PU-rich domains depends on the molecular weight of prepolymer PPG. The highly crosslinked structures will produce large numbers of very small domains. ABCPs based on castor oil show a single T(g) relaxation on the dynamic mechanical spectra. The compatibility between the two components is much better in ABCPs based on castor oil than in those based on PPG, because there is a high crosslink density in the former. Comparison of the dynamic mechanical spectra of ABCP and interpenetrating networks (IPN) based on castor oil with similar crosslink density and composition imply that the two components in ABCP are compatible whereas microphase separation occurs in IPN. An improvement in the compatibility is achieved by the crosslinking between the two networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterization, morphology and thermal properties of commercial ethylene-propylene block copolymers have been studied by C-13 nuclear magnetic resonance (n.m.r.) spectroscopy, differential scanning calorimetry (d.s.c.), dynamic mechanical analysis (d.m.a.) and scanning electron microscopy (SEM). The results obtained show that there exists some ethylene-propylene random copolymer in the block copolymers extractable by n-heptane. The possibility of forming PP-b-PE diblock copolymer is questionable on the basis of the effects of residual propene and the chain-transfer reaction in the sequential copolymerization. A difference in the thermal properties between commercial ethylene-propylene block copolymers and PP/PE blends was noticed, which cannot be used to identify PP-b-PE diblock copolymer. The multiphase structure has been confirmed by d.m.a. and SEM, with ethylene-propylene random copolymer and polyethylene forming the domains in the matrix of polypropylene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of morphology and properties on film-forming conditions is described for the symmetrically substituted copper tetra-4-(2, 4-di-t-amylphenoxy) phthalocyanine (tapCuPc) Langmuir-Blodgett (LB) films. The effects of LB film-forming conditions (such as the surface pressure, pH value and the concentrations of spreading solutions) on film quality were studied with the help of a UV-visible spectrophotometer and a transmission electron microscope. Transmission electron microscopy photographs of the surface morphology of tapCuPc LB films show that a smooth and homogeneous surface structure can be obtained under optimum film-forming conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ethylene oxide) (PEO) was found to be miscible with uncured epoxy resin, diglycidyl ether of bisphenol A (DGEBA), as shown by the existence of a single glass transition temperature (T(g)) in each blend. However, PEO with M(n) = 20 000 was judged to be immiscible with the highly amine-crosslinked epoxy resin (ER). The miscibility and morphology of the ER/PEO blends was remarkably affected by crosslinking. It was observed that phase separation in the ER/PEO blends occurred as the crosslinking progressed. This is considered to be due to the dramatic change in the chemical and physical nature of ER during the crosslinking.