310 resultados para Google earth
Resumo:
The dehydro-aromatization of methane over a Mo-modified penta-sil type high-silica zeolite containing phosphoric and rare earth oxide (abbreviated as Mo/HZRP-1) was investigated. As a modification of HZSM-5, HZRP-1 is also a good support for the preparation of Mo-based zeolite catalysts, and is active for methane dehydro-aromatization. Mo/HZRP-1 catalysts are more active at high Mo loadings compared with Mo/HZSM-5 catalysts. Al-27 MAS NMR spectra of Mo/HZRP-1 reveal that there are two kinds of framework Al in HZRP-1. It is suggested that only the tetrahedral coordinated Al atoms in the form of Al-O-Si species in the zeolite, in the proton forms, are responsible for the formation of aromatics.
Resumo:
The catalytic activity, thermal stability and carbon deposition of various modified NiO/gamma-Al2O3 and unmodified NiO/gamma-Al2O3 catalysts were investigated with a flow reactor, XRD, TG and UVRRS analysis. The activity and selectivity of the NiO/gamma-Al2O3 catalyst showed little difference from those of the modified nickel-based catalysts. However, modification with alkali metal oxide (Li, Na, K) and rare earth metal oxide (La, Ce, Y, Sm) can improve the thermal stability of the NiO/gamma-Al2O3 and enhance its ability to suppress carbon deposition during the partial oxidation of ethane (POE). The carbon deposition contains graphite-like species that were detected by UVRRS. The nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide have excellent catalytic activities (C2H6 conversion of similar to 100%, CO selectivity of similar to 94%, 7x 10(4) l/(kg h), 1123 K), good thermal stability and carbon-deposition resistance.