434 resultados para Fluorescence Resonance Energy Transfer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the syntheses, crystal structures, and luminescent and magnetic properties of four tetranuclear Tb-III (1 and 3) and Dy-III (2 and 4) complexes supported by p-phenylthiacalix[4]arene (H(4)PTC4A) and p-tert-butylthiacalix-[4]arene (H(4)TC4A). All four frameworks can be formulated as [Ln(4)(III)(PTC4A/TC4A)(2)(mu(4)-OH)Cl-3(CH3OH)(2)(H2O)(3)], and some methanol and water solvent molecules are occupied in the interstices. The compounds are featured with a sandwichlike unit constructed by two tail-to-tail calixarene molecules and a planar tetragonal (mu(4)-OH)Ln(4) cluster. The photoluminescent analyses suggest that there is an efficient ligand-to-Ln(III) energy transfer for compounds 1-3 and H(4)PTC4A is a more efficient "antenna" than H(4)TC4A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel strategy for obtaining white electroluminescence (EL) is based on the mechanism of electron trapping on host. Phosphonate-functionalized polyfluorene is chosen as host owing to its strong electron affinity. Electrons are confined mostly by host pendants in the EL process, which suppresses charge transfer from host to dopant. White EL with CIE coordinates of (0.34,0.35) is achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of red-light emitting electrophosphorescent polyfluorenes (PFs) with varying content of a quinoline-based iridium complex, (PPQ)(2)Ir(acac) (bis(2,4-diphenylquinolyl-N,C-2') iridium(acetylacetonate)), in the side chain are synthesized by Suzuki polycondensation. Because of the efficient Forster energy transfer from the PF main chain to (PPQ)(2)Ir(acac) and direct charge trapping on the complex, the electroluminescent emission from PF is nearly completely quenched, even though the amount of iridium complex I incorporated into the polymers is as low as 1 mol %. Based on a single-layer device configuration, a luminous efficiency of up to 5.0 cd A(-1) with a luminance of 2000 cd m(-2) and Commission Internationale de L'Eclairage coordinates of (0.63, 0.35) (x, y) is realized, which is far superior to that of previously reported red-light emitting PFs containing benzothiazole- and isoquinoline-based iridium complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By incorporating a new building block, 7,7,15,15-tetraoctyldinaphtho-s-indacene (NSI), into the backbone of poly(9,9-dioctylfluorene) (PFO), a novel series of blue light-emitting copolymers (PFO-NSI) have been developed. The insertion of the NSI unit into the PFO backbone leads to the increase of local effective conjugation length, to form low-energy fluorene-NSI-fluorene (FNF) segments that serve as exciton trapping sites, to which the energy transfers from the high-energy PFO segments. This causes these copolymers to show red-shifted emissions compared with PFO, with a high efficiency and good color stability and purity. The best device performance with a luminance efficiency of 3.43 cd . A(-1), a maximum brightness of 6 539 cd . m(-2) and CIE coordinates of (0.152, 0.164) was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of oligoaniline-functionalized mono- and bis-topic terpyridine ligands, i.e. C6H5[N(R)C6H4](n)TPY (R = H, butyl, tert-butyloxycarbonyl; n = 1-4; TPY = 2,2':6',2"-terpyridyl) and TPYC6H4[N(R)C6H4](m)TPY (R = H, tert-butyloxycarbonyl; m = 2, 4), and the corresponding monoand bis-nuclear ruthenium(II) complexes have been synthesized and verified. The spectroscopic results indicate that two kinds of pi-pi* transitions from TPY and oligoaniline fragments of ligands strongly shift to lower energy, and the metal-to-ligand charge-transfer transition ((MLCT)-M-1) bands of all obtained complexes are considerably red-shifted (Delta lambda(max) = 22-64 nm) and their intensities become much more intense (approximately 4-6 times), compared with those of the reported complex [Ru(TPY)(2)](2+). Moreover, the spectroscopic properties of the ligands and complexes with longer oligoaniline units (n = 3, 4) are markedly influenced by the external stimulus, such as the oxidation and proton acid doping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel class of hosts suitable for solution processing has been developed based on a conjugated dendritic scaffold. By increasing the dendron generation, the highest occupied molecular orbital (HOMO) energy level can be tuned to facilitate hole injection, while the triplet energy remains at a high level, sufficient to host high-energy-triplet emitters. A power-efficient blue-electrophosphorescent device based on H2 (see figure) is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a sensitively amplified electrochemical aptasensor using adenosine triphosphate (ATP) as a model. ATP is a multifunctional nucleotide thatis most important as a "molecular currency" of intracellular energy transfer. In the sensing process, duplexes consisting of partly complementary strand (PCS1), ATP aptamer (ABA) and another partly complementary strand (PCS2) were immobilized onto Au electrode through the 5'-HS on the PCS1. Meanwhile, PCS2 was grafted with the Au nanoparticles (AuNPs) to amplify the detection signals. In the absence of ATP, probe methylene blue (MB) bound to the DNA duplexes and also bound to guanine bases specifically to produce a strong differential pulse voltammetry (DPV) signal. But when ATP exists, the ABA-PCS2 or ABA-PCS1 part duplexes might be destroyed, which decreased the amount of MB on the electrode and led to obviously decreased DPV signal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, hydrothermal synthesized Fe3O4 microspheres have been encapsulated with nonporous silica and a further layer of ordered mesoporous silica through a simple sol-gel process. The surface of the outer silica shell was further functionalized by the deposition of YVO4:Eu3+ phosphors, realizing a sandwich structured material with mesoporous, magnetic and luminescent properties. The multifunctional system was used as drug carrier to investigate the storage and release properties using ibuprofen (IBU) as model drug by the surface modification. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), N-2 adsorption/desorption, photoluminescence (PL) spectra, and superconducting quantum interference device (SQUID) were used to characterized the samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Luminescent, mesoporous, and bioactive europium-doped hydroxyapatite (HAp:Eu3+) nanofibers and microbelts have been prepared by a combination of sol-gel and electrospinning processes with a cationic surfactant as template. The obtained multifunctional hydroxyapatite nanofibers and microbelts, which have mesoporous structure and red luminescence, were tested as drug carriers by investigating their drug-storage/release properties with ibuprofen (IBU) as model drug. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution (HR) TEM, FTIR spectroscopy, N-2 adsorption/desorption, photoluminescence (PL) spectra, and UV/Vis spectroscopy were used to characterize the structural, morphological, textural, and optical properties of the resulting samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals have been successfully synthesized by a solvothermal process followed by a subsequent heat treatment at 800 degrees C. Powder X-ray diffraction, transmission electron microscopy, upconversion photoluminescence spectra, and kinetic decay were used to characterize the samples. Under single-wavelength diode laser excitation of 980 nm, the bright blue emissions of Lu2O3:Yb3+, Tm3+ nanocrystals near 477 and 490 nm were observed due to the (1)G(4)-> H-3(6) transition of Tm3+. The bright green UC emissions of Lu2O3:Er3+ nanocrystals appeared near 540 and 565 nm were observed and assigned to the H-2(11/2)-> I-4(15/2) and S-4(3/2)-> I-4(15/2) transitions, respectively, of Er3+. The ratio of the intensity of green luminescence to that of red luminescence decreases with an increase of concentration of Yb3+ in Lu2O3:Er3+ nanocrystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes have been prepared by a combination method of sol-gel process and electrospinning. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low voltage cathodoluminescence (CL) and time-resolved emission spectra, as well as kinetic decays were used to characterize the resulting samples. The results of XRD, FT-IR, TG-DTA indicate that the CaWO4 and CaWO4: Tb3+ samples begin to crystallize at 500 degrees C with the scheelite structure. Under ultraviolet excitation and low-voltage electron beams excitation, the CaWO4 samples exhibit a blue emission band with a maximum at 416 nm originating from the WO42- groups, while the CaWO4:Tb3+ samples show the characteristic emission of Tb3+ corresponding to (D4-F6,5,4,3)-D-5-F-7 transitions due to an efficient energy transfer from WO42- to Tb3+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-dimensional X-1-Y2SiO5:Ce3+ and -Tb3+ nanofibers and quasi-one-dimensional X-1-Y2SiO5:Ce3+ and -Tb3+ microbelts have been prepared by a simple and cost-effective electrospinning process. X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy, photoluminescence (PL), and cathodoluminescence spectra were used to characterize the samples. SEM results indicate that the as-prepared fibers and belts are smooth and uniform with a length of several tens to hundreds of micrometers, whose diameters decrease after being annealed at 1000 degrees C for 3 h. Under ultraviolet excitation and low-voltage electron beam excitation, the doped rare earth ions show their characteristic emission, that is, Ce3+ 5d-4f and Tb3+ D-5(4)-F-7(J) (J = 6, 5 4, 3) transitions, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-dimensional CaMoo(4):Ln(3+) (Ln = Eu, Tb, Dy) nanofibers have been prepared by a combination method of sol-gel and electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and low voltage cathodoluminescence (CL) as well as kinetic decays were used to characterize the resulting samples. SEM and TEM analyses indicate that the obtained precursor fibers have a uniform size, and the as-formed CaMoO4:Ln(3+) nanofibers consist of nanoparticles. Under ultraviolet excitation, the CaMoO4 samples exhibit a blue-green emission band with a maximum at 500 nm originating from the MoO42- groups. Due to an efficient energy transfer from molybdate groups to dopants, CaMoO4:Ln(3+) phosphors show their strong characteristic emission under ultraviolet excitation and low-voltage electron beam excitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report a facile route which is based Oil tuning doping concentration of Mn2+ ions in ZnS nanocrystals, to achieve deliberate color modulation from blue to orange-yellow under single-wavelength excitation. X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as photoluminescence (PL) spectra were employed to characterize the obtained samples. In this process, the relative emission intensities of both ZnS host (blue) and Mn2+ dopant (orange-yellow) are sensitive to the Mn2+ doping concentration, due to the energy transfer from ZnS host to Mn2+ dopant. As a result of fine-tuning of these two emission components, white emission can be realized for Mn2+-doped ZnS nanocrystals. Furthermore.