324 resultados para Electrochemistry.
Resumo:
The adsorption of bis(4-pyridyl)disulphide (PySSPy) and 4.4'-bipyridyl (PyPy) on a gold electrode was studied using cyclic voltammetry. The adsorption isotherms and equilibrium constants (1 X 10(6) mol-1 l for PyPy and 6 x 10(6) Mol-1 l for PySSPy) were determined. The effect of pH on the electrochemical behaviour of cytochrome c was studied on the PySSPy-modified gold electrode. The results show that cytochrome c can only transfer electrons on a deprotonated electrode surface. When the pH is decreased, the standard heterogeneous rate constant of cytochrome c on the modified gold electrode decreases and the electrochemical behaviour changes from a quasi-reversible to an irreversible process.
Resumo:
The electrochemically polymerized azure A film electrode was firstly reported in this paper. A quasi-reversible electrode processes of myoglobin with the formal heterogeneous electron transfer rate constant (k(sh)) of 1.73 x 10(-4) cm.s-1 at the polymerized azure A modified electrode have been achieved using in-situ UV-visible spectroelectrochemistry. The adsorption of myoglobin on the polymerized azure A film electrode surface was confirmed by XPS. With simultaneously studying of cyclic voltammetry and in-situ cyclic voltabsorptometry, the attribution of the voltammetry responses of myoglobin at the film electrode has been studied. The mechanism for the heterogeneous electron transfer of myoglobin at the polymerized azure A film modified electrode has been proposed as well.
Resumo:
Results from previous electrochemical studies have indicated that 2,2'-bipyridine and pyrazine do not function as promoters for heterogeneous electron transfer between cytochrome c and metal electrodes. Their lack of activity was attributed to the improper positioning of the two functional groups in 2,2'-bipyridine and the inefficient length of pyrazine. In the present study it was determined that both 2,2'-bipyridine and pyrazine act as promoters when self-absorbed over a sufficiently long dipping time or at roughened electrodes. The promoter characteristics of these two molecules were studied and compared with those of 4,4'-bipyridine. The difference in their promoter behavior appears to result primarily from their different strengths of adsorption and not because electrodes modified with 2,2'-bipyridine or pyrazine are unsuitable for accelerating direct electron transfer reactions in cytochrome c. These results have implications regarding the mechanism(s) of promoter effects in electrochemical reactions of cytochrome c.
Resumo:
The heterogeneous electron transfer reaction of hemeproteins including hemoglobin, myoglobin and cytochrome C at Pt mesh electrode adsorbed methylene blue has been investigated. Thin-layer spectroelectrochemical technique was used for observing the electron transfer processes of three kinds of proteins, and the corresponding electrode rate constants were measured.
Resumo:
Electrodeposition of the phenothiazine mediator titrant toluidine blue onto a glassy carbon substrate at an appropriate potential was used to construct a toluidine blue chemically modified electrode (CME) exhibiting electrocatalytic reduction for myoglobin and hemoglobin. The CME catalyzed the hemoprotein electroreduction at the reduction potential of the mediator molecule. When the CME as used as a detector for flow injection analysis at a constant applied potential of -0.30 V vs. a saturated calomel electrode, it gave detection limits of 20 and 50 ng (1.2 and 0.78 pmol) injected myoglobin and hemoglobin, respectively, with a dynamic linear concentration range over 2 orders of magnitude. After a brief equilibration period, the CME retained nearly 90% of its initial myoglobin response over 8 hours of continuous exposure to the flow-through system.
Resumo:
The equation of the potential-current curve for the ion transfer across the liquid/liquid interface during the linear current scanning has been derived theoretically. A method to calculate the kinetics parameters for the ion transfer by the way of linear current scanning is presented. The transfer of TPAs~+ ions, which is a typical basic electrolyte ion usually used in liquld/liquid interface electrochemistry, was practically investigated at the water/nitrobenzene interface.
Resumo:
I. INTRODUCTIONStudies on the electrochemical phenomena at the liquid-liquid interface are a developing area in electrochemistry and electroanalytical chemistry. The exploration for new ion transfer systems is very important in the development of this area. Dyes are a large group of reagents used widely in analytical chemistry. But no paper deals with the tran,fer processes of dyes at the liquid-liquid (L/L) interface so far.
Resumo:
CORROSION; WATER; SPECTROSCOPY; CHLORIDE; ZINC; NUCLEATION; INTERFACE; ELECTRODE; SURFACES; GROWTH
Improving Ship Detection with Polarimetric SAR based on Convolution between Co-polarization Channels
Resumo:
The convolution between co-polarization amplitude only data is studied to improve ship detection performance. The different statistical behaviors of ships and surrounding ocean are characterized a by two-dimensional convolution function (2D-CF) between different polarization channels. The convolution value of the ocean decreases relative to initial data, while that of ships increases. Therefore the contrast of ships to ocean is increased. The opposite variation trend of ocean and ships can distinguish the high intensity ocean clutter from ships' signatures. The new criterion can generally avoid mistaken detection by a constant false alarm rate detector. Our new ship detector is compared with other polarimetric approaches, and the results confirm the robustness of the proposed method.
Resumo:
An electrochemical DNA biosensor was fabricated by immobilizing DNA probe on aluminum ion films that were electrodeposited on the surface of the stearic acid-modified carbon paste electrode (CPE). DNA immobilization and hybridization were characterized with cyclic voltammetry (CV) by using methylene blue (MB) as indicator. MB has a couple of well-defined voltammetric redox peaks at the CPE. The currents of redox peaks of MB decreased after depositing aluminum ion films on the CPE (Al(III)/CPE) and increased dramatically after immobilizing DNA probe (ssDNA/Al(III)/CPE). Hybridization of DNA probe led to a marked decrease of the peak currents of MB, which can be used to detect the target single-stranded DNA. The conditions for the preparation of Al(III)/CPE, and DNA immobilization and hybridization were optimized. The specific sequences related to bar transgene in the transgenic corn and the PCR amplification of CP4 epsps gene from the sample of transgenic roundup ready soybean were detected by differential pulse voltammetry (DPV) with this new electrochemical DNA biosensor. The difference between the peak currents of MB at ssDNA/Al(III)/CPE and that at hybridization DNA modified electrode (dsDNA/Al(III)/CPE) was applied to determine the Specific sequence related to the target bar gene with the dynamic range comprised between 1.0 X 10(-7) mol/L to 1.0 x 10(-4) mol/L. A detection limit of 2.25 x.10(-8) mol/L. of oligonucleotides can be estimated.
Resumo:
The electrochemical impedance spectroscopy (EIS) at different potentials has been used to study the oxygen reduction reaction (ORR) in 3.5% NaCl solution on glassy carbon (GC) electrode in this work. Results show that ORR consists of three two-electron reaction steps and both superoxide ion (O-2(-)) and hydrogen peroxide (H2O2), which are produced by ORR, obstruct the diffusion of oxygen to the surface of the electrode and make the EIS results change into a transmissive finite diffusion process with the real part contraction and a reflective finite diffusion process from a semi-infinite diffusion process. The values of electron transfer resistance (R-t) and diffusion resistance (R-d) were calculated from EIS. O-2(-) influenced strongly on the Rt values and induced a maximum at -0.45 V.
Resumo:
The bacteria in the anaerobic biofilm on rusted carbon steel immersed in natural seawater were characterized by culturing and molecular biology techniques. Two types of anaerobic bacterium, sulfate-reducing bacteria (SRB) Desulfovibrio caledoniensis and iron-reducing bacteria Clostridium sp. uncultured were found. The compositions of the rust layer were also analyzed and we found that iron oxide and sulfate green rust were the major components. To investigate the corrosion mechanisms, electrochemical impedance spectra was obtained based on the isolated sulfate-reducing bacteria and mixed bacteria cultured from rust layer in laboratory culture conditions. We found that single species produced iron sulfide and accelerated corrosion, but mixed species produced sulfate green rust and inhibited corrosion. The anaerobic corrosion mechanism of steel was proposed and its environmental significance was discussed. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The influences of the growing process of sulfate-reducing bacteria (SRB) in seawater system on the medium state and corrosion behavior of carbon steel were studied by detecting solution state parameters and using corrosion electrochemical methods. The growing process of SRB in the seawater shows the three stages of growing, death and residual phases. The solution state parameters of the concentration of sulfide, the pH value and the redox potential changed during the three stages of the SRB growing process. And the corrosion rate of D36 carbon steel was accelerated during the growing phase and stable during the death and residual phases. The results indicate that the medium state and the corrosion rate of the steel do not depend on the number of active SRB, but depend on the accumulation of the metabolism products of SRB. (c) 2007 Elsevier Ltd. All rights reserved.