399 resultados para polypropylene glycol


Relevância:

10.00% 10.00%

Publicador:

Resumo:

IntroductionConventional polymers such as polyethyleneand polypropylene persistfor many years after landdisposal.Furthermore,plastics are often soiled byfood and other biological substances,making phys-ical recycling of those materials impractical andgenerally undesirable. In contrast,biodegradablepolymers disposed in bioactive environment are de-graded by the enzymatic action of microorganismssuch as bacteria,fungi,and algae.The worldwideconsumption of biodegradable polymers increasedfrom1.4×107kg in ...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starting from nitrate aqueous solutions with citric acid and polyethylene glycol (PEG) as additives, Y3Al5O12:Eu (YAG:Eu) phosphors were prepared by a two-step spray pyrolysis (SP) method. The obtained YAG:Eu phosphor particles have spherical shape, submicron size and smooth surface. The effects of process conditions of the spray pyrolysis on the crystallinity, morphology and luminescence properties of phosphor particles were investigated. The emission intensity of the phosphors increased with increasing of sintering temperature and solution concentration due to the increase of the crystallinity and particles size, respectively. Adequate amount of PEG was necessary for obtaining spherical particles, and the optimum emission intensity could be obtained when the concentration of PEG was 0.10 g/ml in the precursor solution. Compared with the YAG:Eu phosphor prepared by citrate-gel (CG) method with non-spherical morphology, spherical YAG:Eu phosphor particles showed a higher emission intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The toughness of polypropylene (PP)/ethylene-propylene-diene monomer (EPDM) blends was studied over wide ranges of EPDM content and temperature. In order to study the effect of notch radius (R), the toughness of the samples with different notch radii was determined from Izod impact test. The results showed that both toughness and brittle-ductile transition (BDT) of the blends were a function of R, respectively. At test temperatures, the toughness tended to decrease with increasing 1/R for various PP/EPDM blends. Moreover, the brittle-ductile transition temperature (T-BT) increased with increasing 1/R, whereas the critical interparticle distance (IDc) reduced with increasing 1/R. Finally, it was found that the different curves of IDc versus test temperature (T) for different notches reduced down to a master curve if plotting IDc versus T-BT(m)-T, where T-BT(m) was the T-BT of PP itself for a given notch, indicating that T-BT(m)-T was a more universal parameter that determined the BDT of polymers. This conclusion was well in agreement with the theoretical prediction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flow-mode static and dynamic laser light scattering (SLS/DLS) studies of polymers, including polystyrene, polyethylene, polypropylene and poly(dimethylsiloxane) (PDMS), in 1,2,4-trichlorobenzene (TCB) at 150 degreesC were performed on a high temperature gel permeation chromatography (GPC) coupled with a SLS/DLS detector. Both absolute molecular weight (M) and molecular sizes (radius of gyration, R-g and hydrodynamic radius, R-h) of polymers eluting from the GPC columns were obtained simultaneously. The conformation of different polymers in TCB at 150 degreesC were discussed according to the scaling relationships between R-g, R-h and M and the rho-ratio (p = R-g/R-h). Flow-mode DLS results of PDMS were verified by batch-mode DLS study of the same sample. The presented technique was proved to be a convenient and quick method to study the shape and conformation of polymers in solution at high temperature. However, the flow-mode DLS was only applicable for high molecular weight polymers with a higher refractive index increment such as PDMS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyethylene (PE)/montmorillonite (MMT) nanocomposites were prepared by in situ coordination polymerization using a MMT/MgCl2/TiCl4 catalyst activated by AI(Et),. The catalyst was prepared by first diffusing MgCl2 into the swollen MMT layers, followed by loading TiCl4 on the inner/outer layer surfaces of MMT where MgCl2 was already deposited. The intercalation of MMT layers by MgCl2 and TiCl, was demonstrated by the enlarged interlayer spacing determined by WAXD. The nanoscale dispersion of MMT layers in the polyethylene matrix was characterized by WAXD and TEM. As a consequence, the crystallinity of the nanocomposite decreased sharply, whereas the tensile strength was significantly improved compared to that of virgin polyethylene of comparable molecular weight. The confinement of the nanodispersed MMT layers to molecular chain and the strong interaction between the nanoscale MMT layers and the resin matrix were thought to account for the decrease of crystallinity and the remarkable enhancement of strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Triblock copolymer PCL-PEG-PCL was prepared by ring-opening polymerization of epsilon-caprolactone (CL) in the presence of poly(ethylene glycol) catalyzed by calcium ammoniate at 60 degreesC in xylene solution. The copolymer composition and triblock structure were confirmed by H-1 NMR and C-13 WR measurements. The differential scanning calorimetry and wide-angle X-ray diffraction analyses revealed the micro-domain structure in the copolymer. The melting temperature T-c and crystallization temperature T-c of the PEG domain were influenced by the relative length of the PCL blocks. This was caused by the strong covalent interconnection between the two domains. Aqueous micelles were prepared from the triblock copolymer. The critical micelle concentration was determined to be 0.4-1.2 mg/l by fluorescence technique using pyrene as probe, depending on the length of PCL blocks, and lower than that of corresponding PCL-PEG diblock copolymers. The H-1 NMR spectrum of the micelles in D2O demonstrated only the -CH2CH2O- signal and thus confirmed. the PCL-core/PEG-shell structure of the micelles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to use the Palierne emulsion type model to describe the relationship between the rheological response to small amplitude oscillatory deformation and morphology of polypropylene/polyamide 6 (PP/PA6) blends compatibilized with maleic anhydride grafted polypropylene (PP-g-MAH). It was found that the Palierne emulsion type model could describe very well the linear viscoelastic responses of binary uncompatibilized PP/PA6 blends and failed to describe the ternary compatibilized PP/PP-g-MAH/PA6 blends. These features could be attributed to the fact that the morphology of the ternary blends was not of the emulsion type with the PA6 particles dispersed in the PP matrix but of an emulsion-in-emulsion type, i.e., PA6 particles dispersed in the PP matrix themselves contained PP or PP-g-MAH inclusions. By consideration of PP-in-PA6 particles as pure PA6 particles, where the volume fraction of the PA6 phase was increased accordingly, the Palierne emulsion type model could work very well for a ternary blending system. Preshear at low frequencies modified the morphology of both binary and ternary blends. The particles of the dispersed phase (PA6) became more uniform. These results suggested that the Palierne emulsion type model could be used to extract information on rheological properties and interfacial tension of polymer blends from known morphology and vice versa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modification of high-impact polystyrene (HIPS) was accomplished by melt-grafting glycidyl methacrylate (GMA) on its molecular chains. Fourier transform infrared spectroscopy and electron spectroscopy for chemical analysis were used to characterize the formation of HIPS-g-GMA copolymers. The content of GMA in HIPS-g-GMA copolymer was determined by using the titration method. The effect of the concentrations of GMA and dicumyl peroxide on the degree of grafting was studied. A total of 1.9% of GMA can be grafted on HIPS. HIPS-g-GNU was used to prepare binary blends with poly(buthylene terephthalate) (PBT), and the evidence of reactions between the grafting copolymer and PBT in the blends was confirmed by scanning electron microscopy (SEM), dynamic mechanical analysis, and its mechanical properties. The SEM result showed that the domain size in PBT/HIPS-g-GMA blends was reduced significantly compared with that in PBT/HIPS blends; moreover, the improved strength was measured in PBT/HIPS-g-GMA blends and results from good interfacial adhesion. The reaction between ester groups of PBT and epoxy groups of HIPS-g-GMA can depress crystallinity and the crystal perfection of PBT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A main-chain nonracemic chiral liquid crystalline polymer was synthesized from (R)-(-)4'-{w-[2-(p-hydroxy-o-nitrophenyloxy)-1-propyloxy]-1-decyloxyl-4-biphenylcarboxylic acid. This polymer contained 10 methylene units in each chemical repeating unit and was abbreviated PET(R*-10). On the basis of differential scanning calorimetry, wide-angle X-ray diffraction, and polarized light microscopy experiments, chiral smectic C (S-C*) and chiral smectic A (S-A*) phases were identified. Both flat-elongated and helical lamellar crystal morphologies were observed in transmission electron microscopy. Of particular interest was the flat-elongated lamellar crystals were constructed via microtwinning of an orthorhombic cell with dimensions of a = 1.42 nm, b = 1.28 nm, and c = 3.04 nm. On the other hand, the helical lamellar crystals were exclusively left-handed, which was opposite to the right-handed helical crystals grown in PET(R*-9) and PET(R*-11) (having 9 and 11 methylene units, respectively). Note that these three polymers had identical right-handed chiral centers (R*-). Therefore, a single methylene unit difference on the polymer backbones on an atomic length scale substantially changed the chirality of the crystals in the micrometer length scale. Furthermore, aggregates of these helical crystals in PET(R*-10) did not generate banded spherulites in polarized light microscopy. Possible reasons for this change and loss of helical senses (handedness) on different length scales in chirality transferring processes were discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic-inorganic hybrid SiO2 xerogels were prepared by the sol-gel method under various preparation conditions and compositions by using tetraethoxysilane (TEOS), (3-aminopropyl) triethoxysilane (A-PS), (3-glycidoxypropyl) trimethoxysilane (GPS), organic acid (CH3COOH) and inorganic acids (HCl, HNO3, H2SO4) as the main precursors. Luminescence and FT-IR spectra were used to characterize the resulted hybrid SiO2 xerogels. The result of FT-IR spectrum shows that the xerogels are composed of non-crystalline -Si-O-Si- networks containing some organic groups such as -NH, -CH and -OH. Under the excitation of 365 nm, all the hybrid xerogels exhibit strong luminescence in the blue region, but the emission intensity and position depend on the starting precursor compositions to a large extent. Suitable amount of polyethylene glycol (PEG500 and PEG10000) in the hybrid xerogels can enhance the emission intensity. Additionally, the emission intensity of the hybrid xerogels increases with heat treatment temperature in the range of ambient to 200degreesC, and vacuum condition is also able to enhance the emission intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Themorphologies and structures of single crystals of syndiotactic poly(propene-co-1-butene) (PPBU) with 1-butene contents of 2.6, 4.2, 9.9, 16.2, and 47.9 mol % are studied by transmission electron microscopy and electron diffraction. The electron diffraction results show that the 1-butene units are included in the crystalline phase of the sPP homopolymer. A small amount of 1-butene (<4.2 mol %) has no significant influence on the antichiral chain packing of sPP. With increasing content of 1-butene units, an increasing packing disorder is observed in the PPBU copolymers. The antichiral packing model is, however, always the predominant chain packing structure of the copolymers with the analyzed composition. Bright-field electron microscopy observation shows that the PPBU single crystals exhibit always regular rectangular or lathlike shapes with preferred growth direction along their crystallographic b-axes owing to their packing features. The incorporated 1-butene units influence the crystallization behavior of sPP distinctly. With the increase of the 1-butene units, the aspect ratio of the single crystals increases. Furthermore, the typical transverse microcracks and ripples of the highly stereoregular sPP are no more so prominent for the copolymers. The microcracks are occasionally observed in the single crystals of copolymers with low 1-butene content (less than or equal to4.2 mol %), while transverse ripples are only seen in the crystals of the copolymer having a 1-butene content of 9.9 mol %. With a further increase in the content of 1-butene units, the copolymers behave like the low stereoregular sPP, where neither cracks nor ripples are observed any more.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The miscibility and mechanical properties of the blends of polybutylene terephthalate (PBT) and polypropylene (PP) with a liquid crystalline ionomer (LCI) containing a sulfonate group on the terminal unit as a compatibilizer were assessed. SEM and optical microscopy (POM) were used to examine the morphology of blends of PBT/PP compatibilized by LCI. DSC and TGA were used to discuss the thermal properties of PBT/PP blends with LCI and without LCI. The experimental results revealed that the LCI component affect, to a great extent, the miscibility and crystallization process and mechanical property of PBT/PP blends, The fact is that increasing LCI did improve miscibility of PBT/PP blends and the addition of 1% LCI to the PBT/PP blends increased the ultimate tensile strength and the ultimate elongation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterogeneous electron transfer rate constants (k(s)) and diffusion coefficients (D) of the ferrocene and its derivatives. in a new synthetic comb polymer solvent, poly(dimethylsiloxane-g-monomethylether polyethylene glycol) (SCP), and several other polymer solvents were estimated by using microelectrodes. Also, the influence of various supporting electrolytes on k(s) and D of ferrocene was studied. It was shown that k(s) and D of ferrocene decreased with increasing anionic size of the supporting electrolyte, but k(s) tended to increase with increasing radius of the solvated cation. Also, the cationic size of the supporting electrolytes had little effects on D. The values of k(s) and D for the ferrocene derivatives in the polymer solvents were in sharp contrast to those in monomeric solvents. Thus. the k(s) values were proportional to D in the polymer solvents. which indicates that solvent dynamics control of the electrode reaction. The values of k(s) and D of ferrocene in SCP were larger than those in other polymer solvents indicating that SCP is a good polymer solvent. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rare earth complex Eu(phen)(2)Cl-3 was introduced into a SiO2-PEG-400 hybrid material by a sol-ger method. The result indicated that Poly(ethylene glycol) (PEG) could associate with Eu3+ and change the surroundings of Eu3+ in the hybrid material, greatly improving the decay time. Transparent SiO2-PEG400 hybrid doped with a very small amount of Eu(phen)(2)Cl-3 has better mechanical properties and can retain excellent luminescence properties of the rare earth complex. (C) 2000 Elsevier Science B.V. All rights reserved.