606 resultados para cobalt bromide catalyst
Resumo:
Catalytic NO decomposition on LaSrMn1-x Ni (x) O4+delta (0 a parts per thousand currency sign x a parts per thousand currency sign 1) is investigated. The activity of NO decomposition increases dramatically after the substitution of Ni for Mn, but decreases when Mn is completely replaced by Ni (x = 1.0). The optimum value is at x = 0.8. These indicate that the catalytic performance of the samples is contributed by the synergistic effect of Mn and Ni. O-2-TPD and H-2-TPR experiments are carried out to explain the change of activity. The former indicates that only when oxygen vacancy is created, could the catalyst show enhanced activity for NO decomposition; the latter suggests that the best activity is obtained from catalyst with the most matched redox potentials (in this work, the biggest Delta T and Delta E values).
Resumo:
The catalytic mechanism for the oxidation of primary alcohols catalyzed by the two functional models of galactose oxidase (GOase), M-II L (M = Cu, Zn; L = N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)1-2-diiminoquinone)), has been studied by use of the density functional method B3LYP The catalytic cycle of Cu- and Zn-catalysts consists of two parts, namely, substrate oxidation (primary alcohol oxidation) and O-2 reduction (catalyst regeneration). The catalytic mechanisms have been studied for the two reaction pathways (route 1 and route 2). The calculations indicate that the hydrogen atom transfer within the substrate oxidation part is the rate-determining step for both catalysts, in agreement with the experimental observation.
Resumo:
Cobalt 2,4-dinitrophenolate (complex 1) based upon a N,N,O,O-tetradentate Schiff base ligand framework was prepared. X-ray diffraction analysis confirmed that complex 1 was triclinic species with a six-coordinated central cobalt octahedron in the solid. Asymmetric alternating copolymerization of carbon dioxide (CO2) with racemic propylene oxide (rac-PO) proceeded effectively by complex 1 in conjunction with (4-dimethylamino)pyridine (DMAP), yielding a perfectly alternating and bimodal molecular weight distribution PO/CO2 poly(propylene carbonate) (PPC) with a small amount of cyclic carbonate byproducts.
Resumo:
The reactive compatibilization of LLDPE/PS (50/50 wt%) was achieved by Friedel-Crafts alkylation reaction with a combined Lewis acids (Me3SiCl and InCl3 center dot 4H(2)O) as catalyst. The graft copolymer at the interface was characterized by Fourier transform infrared spectroscopy and the morphology of the blends was analysized by scanning electron microscopy. It was found that the combined Lewis acids had catalytic effect on Friedel-Crafts alkylation reaction between LLDPE and PS, and the catalytic effect was maximal when the molar ratio of InCl3 center dot 4H(2)O to Me3SiCl was 1:5. The graft copolymer LLDPE-g-PS was formed via the F-C reaction and worked as a tailor-made compatibilizer to reduce the interfacial tension. The mechanical properties of reactive blend with combined Lewis acids as catalyst was notably improved compared to that of physical LLDPE/PS blend and serious degradation had been decreased compared to the reactive blend system with AlCl3 as catalyst; we interpreted the above results in term of acidity of combined Lewis acids.
Resumo:
Ti70Zr10Co20 containing an icosahedral quasicrystalline phase has been fabricated, and presents high activity and selectivity in catalyzing the oxidation of cyclohexane with oxygen under solvent-free conditions.
Resumo:
Ionic liquid monomer 1-vinyl-3-ethylimidazolium bromide (ViEtIM(+)Br(-)) was first used to copolymerize with acrylonitrile (AN) successfully under various conditions. This was achieved with azobisisobutyronitrile as the initiator and dimethyl sulfoxide as the solvent. The kinetics of this copolymerization were studied. The values of the monomer apparent reactivity ratios were calculated by the Kelen-Tudos method. The apparent reactivity ratios of ViEtIM(+)Br(-) (r(ViEtIM+Br-)) and AN (r(AN)) were similar at polymerization conversions of less than 10%, (r(AN) = 0.954, r(ViEtIM+Br-) = 0.976). The copolymers were obtained with high molecular weights and high hydrophilicides. The copolymers were characterized by H-1-NMR, differential scanning calorimetry, and thermogravimetric analysis. These copolymers may be potentially useful in the preparation of precursor fibers and carbon fibers.
Resumo:
The effect of template phase on the structures of as-synthesized silica nanoparticles with fragile DDAB vesicles as templates is reported. It is found that the template phase plays a critical role in the growth process of silica: the unstable DDAB vesicles in liquid-crystalline phase often lead to the formation of mesostructured solid spheres, and the rather stable DDAB vesicles in gel phase lead to the formation of hollow spheres with less mesostructures.
Resumo:
Soluble NdCl3 center dot 3EHOH (2-ethyl hexanol) in hexane combined with AlEt3 is highly active for isoprene polymerization in hexane. The NdCl3 center dot 3EHOH/AlEt3 has higher activity than the typical binary catalyst NdCl3 center dot 3(i)PrOH (isopropanol)/AlEt3 and ternary catalyst NdV3 (neodymium versatate)/AlEt2Cl/Al(i-Bu)(2)H. The molecular weight of polyisoprenes can be controlled by variation of [Nd], [Al]/[Nd] ratio and polymerization temperature and time. The NdCl3 center dot 3EHOH/AlEt3 catalyst polymerized isoprene to afford products featuring high cis-1,4 stereospecificity (ca. 96%), high molecular weight (ca. 10(5)) and relatively narr ow molecular weight distributions (M-w/M-n = 2.0-2.8) simultaneously. More importantly, some living polymerization characteristics were demonstrated: (a) absence of chain termination; (b) linear correlation between M-n and polymer yield; (c) increment of molecular weight in the 'seeding' polymerization. Though some deviation from the typical living polymerization such as molecular weight distribution is not narrow enough and the line of M-n and polymer yield does not extrapolate to zero, controlled polymerization with the current catalyst can still be concluded.
Resumo:
Au/Pt core shell nanoparticles (NPs) have been prepared via a layer-by-layer growth of Pt layers on An NPs using underpotential deposition (UPD) redox replacement technique. A single UPD Cu monolayer replacement with Pt(11) yielded a uniform Pt film on Au NPs, and the shell thickness can be tuned by controlling the number of UPD redox replacement cycles. Oxygen reduction reaction (ORR) in air-saturated 0.1 M H2SO4 was used to investigate the electrocatalytic behavior of the as-prepared core shell NPs. Cyclic voltammograms of ORR show that the peak potentials shift positively from 0.32 V to 0.48 V with the number of Pt layers increasing from one to five, suggesting the electrocatalytic activity increases with increasing the thickness of Pt shell. The increase in electrocatalytic activity may originate mostly from the large decrease of electronic influence of Au cores on surface Pt atoms. Rotating ring-disk electrode voltammetry and rotating disk electrode voltammetry demonstrate that ORR is mainly a four-electron reduction on the as-prepared modified electrode with 5 Pt layers and first charge transfer is the rate-determining step.
Resumo:
MgO supported copper salt of molybdovanadophosphoric acid H4PMo11VO40 catalysts were prepared in alcohol by impregnation and the carbon deposition over these catalysts during the n-hexanol oxidation reaction was studied. The coke predominantly deposited on the catalyst surface in the form of CH., and it was not found that it caused the deactivation of the catalyst. The XRD, IR, XPS characterizations reveal that the Keggin structure of the CPMV was unaffected by carbon deposition. Moreover, it was shown that the supported CPMVs over the MgO surface can be beneficial to eliminate the coke. The temperature programmed oxidation (TPO) study showed that coke was formed over the catalyst on two different sites: (1) deposited on the CPMVs which can be burn off at a low temperature; (2) deposited on the MgO which could only be removed at higher temperature. The coke content reached constant with the reaction time increasing.
Resumo:
An efficient enantioselective catalyst of 5 wt.% Ru/-gamma-Al2O3 modified with R,R-1,2-diphenylethylene-diamine ((R,R)-DPEN) for the hydrogenation of a non-activated aromatic ketone of acetophenone has been investigated, a relatively high enantiomeric excess (ee) of 60.5% was obtained at both the conversion and selectivity larger than 99%, it was about three times higher than the ee values reported up to now for acetophenone hydrogenation with the supported transition metal catalysts modified by chiral reagents. The influences of some reaction parameters such as phosphine ligand, substrate/catalyst/modifier molar ratios, base, solvent, pressure and reaction temperature have been discussed. The chiral modifier of (R,R)-DPEN was very important in controlling the enantioselectivity through adsorption competing with other substrates on the surface of active metal species. The phosphine ligand and base were also important and indispensable in the present reaction.
Resumo:
In this work, a new promoter, tetrasulfophthalocyanine (FeTSPc), one kind of environmental friendly material, was found to be very effective in both inhibiting self-poisoning and improving the intrinsic catalysis activity, consequently enhancing the electro-oxidation current during the electro-oxidation of formic acid. The cyclic voltammograms test showed that the formic acid oxidation peak current density has been increased about 10 times compared with that of the Pt electrode without FeTSPc. The electrochemical double potential step chronoamperometry measurements revealed that the apparent activity energy decreases from 20.64 kJ mol(-1) to 17.38 kJ mol(-1) after Pt electrode promoted by FeTSPc. The promoting effect of FeTSPc may be owed to the specific structure and abundant electrons of FeTSPc resulting in both the steric hindrance of the formation of poisoning species (CO) and intrinsic kinetic enhancement. In the single cell test, the performance of DFAFC increased from 80 mW cm(-2) mg(-1) (Pt) to 130 mW cm(-2) mg(-1) after the anode electrode adsorbed FeTSPc.