331 resultados para UV laser


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of plasma temperature on electrostatic shock generated by a circularly polarized laser pulse in overdense plasma is studied by particle-in-cell simulation. Ion reflection and transmission in the collisionless electrostatic shock (CES) are investigated analytically. As the initial ion temperature is varied, a distinct transition from the laser-driven piston scenario with all ions being reflected to the CES scenario with partial ion reflection is found. The results show that at low but finite temperatures the ions are much more accelerated than if they were cold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of an ultraintense circularly polarized laser pulse and a solid target is studied by one-dimensional particle-in-cell simulations. Ions at the front of the target are reflected by a moving quasisteady electrostatic field and obtain a relativistic velocity. At a laser intensity of 10(22) W/cm(2), almost half of the laser energy is transferred to ions and GeV ions are obtained. Effects of laser polarization state and target thickness on the laser energy conversion are investigated. It is found that a circularly polarized laser pulse can accelerate ions more efficiently than a linearly polarized laser pulse at the same laser and target parameters. A monoenergetic ion bunch is obtained for the ultrathin target, which is accelerated as a single entity. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrated that a synthesized laser field consisting of an intense long (45 fs, multi-optical-cycle) laser pulse and a weak short (7 fs, few-optical-cycle) laser pulse can control the electron dynamics and high-order harmonic generation in argon, and generate extreme ultraviolet supercontinuum towards the production of a single strong attosecond pulse. The long pulse offers a large amplitude field, and the short pulse creates a temporally narrow enhancement of the laser field and a gate for the highest energy harmonic emission. This scheme paves the way to generate intense isolated attosecond pulses with strong multi-optical-cycle laser pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of an arbitrary polarized few-cycle ultrashort laser pulse in a degenerate three-level medium is investigated by using an iterative predictor-corrector finite-difference time-domain method. It is found that the polarization evolution of the ultrashort laser pulse is dependent not only on the initial atomic coherence of the medium but also on the polarization condition of the incident laser pulse. When the initial effective area is equal to 2 pi, complete linear-to-circular and circular-to-linear polarization conversion of few-cycle ultrashort laser pulses can be achieved due to the quantum interference effects between the two different transition paths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase-matching condition of high-order harmonic generation driven by intense few-cycle pulses could be controlled by adding second-harmonic pulses to change the ionization fraction of the gaseous medium. The harmonic generation efficiency could be improved by moving the phase-matching point with an all-optical control of the ionization fraction or a proper change of the confocal parameter. A specific order of harmonics could be easily controlled to reach phase matching at a fixed higher gas pressure by adding second-harmonic pulses with a suitable intensity. Such an all-optical phase-matching control was demonstrated to be dependent upon the temporal delay between the fundamental-wave and second harmonic pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical fluid model is proposed for the generation of strong quasistatic magnetic fields during normal incidence of a short ultraintense Gaussian laser pulse with a finite spot size on an overdense plasma. The steepening of the electron density profile in the originally homogeneous overdense plasma and the formation of electron cavitation as the electrons are pushed inward by the laser are included self-consistently. It is shown that the appearance of the cavitation plays an important role in the generation of quasistatic magnetic fields: the strong plasma inhomogeneities caused by the formation of the electron cavitation lead to the generation of a strong axial quasistatic magnetic field B-z. In the overdense regime, the generated quasistatic magnetic field increases with increasing laser intensity, while it decreases with increasing plasma density. It is also found that, in a moderately overdense plasma, highly intense laser pulses can generate magnetic fields similar to 100 MG and greater due to the transverse linear mode conversion process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton trapping and acceleration by an electron bubble-channel structure in laser interaction with high-density plasma is investigated by using three-dimensional particle-in-cell simulations. It is shown that protons can be trapped, bunched, and efficiently accelerated for appropriate laser and plasma parameters, and the proton acceleration is enhanced if the plasma consists mainly of heavier ions such as tritium. The observed results are analyzed and discussed in terms of a one-dimensional analytical three-component-plasma wake model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate the high-order harmonic generation in a helium atom with a two-color optical field synthesized by an intense 6 fs pulse at 800 nm and a relatively weak 21.3 fs pulse at 400 nm. When the frequency-doubled pulse is properly time shifted with respect to the fundamental pulse, an ultrabroad extreme ultraviolet supercontinuum spectrum with a 148 eV spectral width can be generated which directly creates an isolated 65 as pulse even without phase compensation. We explain this extraordinary phenomenon by analyzing maximum electron kinetic energies at different return times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium. Our results show that a soliton pulse can be generated during the two-photon resonant propagation of few-cycle pulse in the polar molecule medium. Moreover, the main features of the soliton pulse, such as pulse duration and intensity, depend crucially on the carrier-envelope phase of the incident pulse, which could be utilized to determine the carrier-envelope phase of a few-cycle ultrashort laser pulse from a mode-locked oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a method for the selective introduction of fluorescent Ag nanoclusters in glass. Extinction and photoluminescence spectra show that a fraction of the Ag atoms are generated through femtosecond laser induced multiphoton reduction and then aggregate to form Ag nanoclusters after heat treatment. Red luminescence from the irradiated region is observed under blue or green laser excitation. The fluorescence can be attributed to interband transitions within Ag nanoclusters. This method provides a novel route to fabricate fluorescent nanomaterials in 3D transparent materials. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the single-shot damage in magnesium fluoride irradiated by 800 nm femtosecond (fs) laser. The dependence of damage thresholds on the laser pulse durations from 60 to 750 fs was measured. The pump-probe measurements were carried out to investigate the time-resolved electronic excitation processes. A coupled dynamic model was applied to study the microprocesses in the interaction between fs laser and magnesium fluoride. The results indicate that both multiphoton ionization and avalanche ionization play important roles in the femtosecond laser-induced damage in MgF2. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a simple route for ZnSe nanowire growth in the ablation crater on a ZnSe crystal surface. The crystal wafer, which was horizontally dipped in pure water, was irradiated by femtosecond laser pulses. No furnace, vacuum chamber or any metal catalyst were used in this experiment. The size of the nanowires is about 1-3 mu m long and 50-150 nm in diameter. The growth rate is 1-3 mu m/s, which is much higher than that achieved with molecular-beam epitaxy and chemical vapor deposition methods. Our discovery reveals a rapid and simple way to grow nanowires on designed micro-patterns, which may have potential applications in microscopic optoelectronics. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of a laser-accelerated micron-size projectile on a dense plasma target is studied using two-dimensional particle-in-cell simulations. The projectile is first accelerated by an ultraintense laser. It then impinges on the dense plasma target and merges with the latter. Part of the kinetic energy of the laser-accelerated ions in the projectile is deposited in the fused target, and an extremely high concentration of plasma ions with a mean kinetic energy needed for fusion reaction is induced. The interaction is thus useful for laser-driven impact fusion and as a compact neutron source.