425 resultados para PT-RU ANODES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文以微孔细陶作为电极内充液的支撑材料,制备了简易参比电极一Pt/(I_3~-+I~-)电极。初步考察了Pt/(I_3~-+I~-)电极在水溶液及多种有育机溶剂中的稳定性,并与Ag/AgCl、甘汞电极进行比较。实验结果表明,Pt/(I_3~-+I~-)电毁不仅在介电常数较大的有机溶剂中有稳定电位,在某些介电常数较小的有机溶剂中也有稳定电位。在水溶液中其电位稳定性不亚于Ag/AgCl、甘汞电极,可用怍测水溶液 pH 值的参比电极。Pt/(I_3~-+I~-)电捉还具育结构简单容易制备等院点。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gakkel Ridge in Arctic Ocean is the ulstraslow spreading ridge in the world with a full spreading rate decreasing from 14 mm/yr in the western end to 7mm/yr in the eastern end. To study the histories of partial melting and melt referilization occurred in the oceanic mantle beneath Gakkel Ridge, both extremely fresh and altered abyssal peridotites from two dredge hauls (PS66-238 and HLY0102-D70) have been selected in this research. Major and trace element data of the residual minerals suggest that all samples have been refertilized by late enriched melts after low to moderate degrees (3-12%) of partial melting in the stability field of spinel, whereas some samples also inherited signatures of partial melting in stability field of garnet. Os isotopic compositions of Gakkel samples have not been significantly affected by late processes, e.g., seawater alteration and melt refertilzaiton. Samples from both dredge hauls have similar range of 187Os/188Os, from strongly unradiogenic (~0.114) in the harzburgites to approximating the inferred values of PUM (primitive upper mantle) in some lherzolites (~0.129). Inherited ancient depletion events in the harzburgites with Re-depletion age up to 2 billion years are unrelevant to the recent genesis of MORB (mid-ocean ridge basalts) beneath Gakkel Ridge. Comparisons of highly siderophile elements (HSEs) between the fresh and altered samples suggested both Pd and Re were affected and thus are mobile during seawater alteration, whereas the other HSEs (i.e., Os, Ir, Ru an Pt) are stable. The fractionated HSEs patterns in the harzburgites suggest both PPGEs (Pt and Pd) and Re can be fractionated from IPGEs (Os, Ir and Ru) at low degree of partial melting, which might be due to physical dredging of sulfide melts by silicate melts rather than equilibrium partitioning between residues and silicate melts. Inferred HSEs budget of the PUM confirm the previous study that both Ru/Ir and Pd/Ir are suprachondritic in the PUM. Some modifications of late-veneer hypothesis are required in light of the unique PUM composition. HSEs and Os isotopic compositions of Gakkel abyssal peridotites indicate the oceanic mantle is highly heterogeneous within a scale of one dredge haul (<5 km). Both depleted and fertile mantle domains are likely to be mechanically juxtaposed in the asthenosphere in a state of ‘plum pudding’. Widely distribution of ancient depleted components in the asthenosphere suggests that DMM (depleted MORB mantle) should not be synonymous with the MORB source. The later is just the fertile part of the former, i.e., the depleted components in the DMM do not or contribute little to the genesis of MORB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterization of Platinum Group Elements (PGE) has been applied to earth, space and environmental sciences. However, all these applications are based on a basic prerequisite, i.e. their concentration or ratio in the research objects can be accurately and precisely determined. In fact, development in these related studies is a great challenge to the analytical chemistry of the PGE because their content in the geological sample (non-mineralized) is often extremely low, range from ppt (10~(-12)g/g) to ppt (10~(-9)g/g). Their distribution is highly heterogeneous, usually concentrating in single particle or phase. Therefore, the accurate determination of these elements remains a problem in analytical chemistry and it obstructs the research on geochemistry of PGE. A great effort has been made in scientific community to reliable determining of very low amounts of PGE, which has been focused on to reduce the level of background in used reagents and to solve probable heterogeneity of PGE in samples. Undoubtedly, the fire-assay method is one of the best ways for solving the heterogeneity, as a large amount of sample weight (10-50g) can be hold. This page is mainly aimed at development of the methodology on separation, concentration and determination of the ultra-trace PGE in the rock and peat samples, and then they are applied to study the trace of PGE in ophiolite suite, in Kudi, West Kunlun and Tunguska explosion in 1908. The achievements of the study are summarized as follows: 1. A PGE lab is established in the Laboratory of Lithosphere Tectonic Evolution, IGG, CAS. 2. A modified method of determination of PGE in geological samples using NiS Fire-Assay with inductively coupled plasma-mass spectrometry (ICP-MS) is set up. The technical improvements are made as following: (1) investigating the level of background in used reagents, and finding the contents of Au, Pt and Pd in carbonyl nickel powder are 30, 0.6 and 0.6ng/g, respectively and 0.35, 7.5 and 6.4ng, respectively in other flux, and the contents of Ru, Rh, Os in whole reagents used are very low (below or near the detection limits of ICP-MS); (2) measuring the recoveries of PGE using different collector (Ni+S) and finding 1.5g of carbonyl nickel is effective for recovering the PGE for 15g samples (recoveries are more than 90%), reducing the inherent blank value due to impurities reagents; (3) direct dissolving nickel button in Teflon bomb and using Te-precipitation, so reducing the loss of PGE during preconcentration process and improving the recoveries of PGE (above 60% for Os and 93.6-106.3% for other PGE, using 2g carbonyl nickel); (4) simplifying the procedure of analyzing Osmium; (5)method detection limits are 8.6, 4.8, 43, 2.4, 82pg/g for 15g sample size ofRu, Rh, Pd, Ir, Pt, respectively. 3. An analytical method is set up to determine the content of ultra-trace PGE in peat samples. The method detection limits are 0.06, 0.1, 0.001, 0.001 and 0.002ng/mL for Ru, Rh, Pd, Ir and Pt, respectively. 4. Distinct anomaly of Pd and Os are firstly found in the peat sampling near the Tunguska explosion site, using the analytical method. 5. Applying the method to the study on the origin of Tunguska explosion and making the following conclusions: (1) these excess elements were likely resulted from the Tunguska Cosmic Body (TCB) explosion of 1908. (2) The Tunguska explosive body was composed of materials (solid components) similar to C1 chondrite, and, most probably, a cometary object, which weighed more than 10~7 tons and had a radius of more than 126 m. 6. The analysis method about ultra-trace PGE in rock samples is successfully used in the study on the characteristic of PGE in Kudi ophiolite suite and the following conclusions are made: (1) The difference of the mantle normalization of PGE patterns between dunite, harzburgite and lherzolite in Kudi indicates that they are residual of multi-stage partial melt of the mantle. Their depletion of Ir at a similar degree probably indicates the existence of an upper mantle depleted Ir. (2) With the evolution of the magma produced by the partial melt of the mantle, strong differentiation has been shown between IPGE and PPGE; and the differentiation from pyroxenite to basalt would have been more and more distinct. (3) The magma forming ophiolite in Kudi probably suffered S-saturation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The platinum-group elements (PGE), including Os, Ir, Ru, Rh, Pt and Pd, axe strongly siderophile and chalcophile. On the basis of melting temperature, the PGE may be divided into two groups: the Ir group (IPGE, >2000°C) consisting of Os, Ir and Ru, and the Pd group (PPGE, <20GO°C) consisting of Rh, Pt and Pd. Because of their unique geochemical properties, PGE provide critical information on global-scale differentiation processes, such as core-mantle segregation, late accretionary history, and core-mantle exchange. In addition, they may be used to identify magma source regions and unravel complex petrogenetic processes including partial melting, melt percolation and metasomatism in the mantle, magma mixing and crustal contamination in magma chambers and melt crystallization.Compared with other rocks, (ultra)mafic rocks have lower REE content but higher PGE content, so PGE have advantages in studying the petrogeneses and evolution of them. In this study, we selected (ultra)mafic rocks collected in Dabie Orogen and volcanic rocks from Fuxin Region. Based on the distribution and behaviour of platinum-group elements, combined with other elements, we speculate the magma evolution and source mantle of these (ultra)mafic rocks and volcanic rocks.Many (ultra)mafic rocks are widely distributed in Dabie Region. According to their deformation and metamorphism, we classed them into three types. One is intrusive (ultra)mafic rocks, which are generally undeformed and show no or little sign of metamorphism, such as (ultra)mafic intrusions in Shacun, zhujiapu, Banzhufan, qingshan, Xiaohekou, Jiaoziyan, Renjiawan and Daoshichong. The other one is ultrahigh pressure metamorphic (ultra)mafic rocks, some of them appeared as eelogites, such as complex in Bixiling and adjacent Maowu. Another one is intense deformed and metamorphic, termed as tectonic slice, alpine-type (ultra)mafic rocks. The most representative is Raobazhai and Dahuapin. However, there are many controversies about the formation of those (ultra)mafic rocks. Here, we select typical rocks of the three types. The PGE were determined by inductively coupled plasma mass spectrometry (ICP-MS) ater NiS fire-assay and tellurium co-precipitation.The PGE tracing shows that three components are needed in the source of the cretaceous (uitra)mafic intrusions. They could be old enriched sub-continental lithospheric mantle, lower crust and depleted asthenospheric mantle. The pattern of PGE also shows the primitive magma of these intrusions underwent S saturation. According to palladium, we can conclude that the mantle enrich in PGE. Distribution of PGE in Bixiiing and Maowu (ultra)mafic rocks display they are products of magmas fractional crystallization. The (ultra)mafic rocks in Bixiiing and Maowu are controlled by various magmatic processes and the source mantle is depleted in PGE. Of interest is that the mantle produced UHP (ultra)mafic rocks are PGE-depleted, whereas the mantle of cretaceous (ultra)mafic intrusions are enrich in PGE. This couldindicate that the mantle change from PGE-enriched to PGE-depleted during120-OOMa, which in accord with the time of tectonic system change in the East China. At the same time, (ultra)mafic intrusions in cretaceous took information of deep mantle, which means the processes in deep mantle arose structural movement in the crust The character of PGE in alpine-type (ultra)mafic rocks declared that the rocks had experienced two types of metasomatic processes - hydrous melt derived from slab and silicate melt. In addition, we analyze the platinum-group elements in volcanic rocks on the northern margin of the North China Craton, Fuxin. The volcanic rocks characterized by negative anomalies of platinum. This indicates that platinum alloys, which may host some Pt resided in the mantle. The PGE patterns also show that Jianguo alkali basalts derived from asthenospheric mantle source, but wulahada high-Mg andesites derived from lithospheric mantle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

攀西地区龙帚山和二滩玄武岩形成于较低程度地幔部分熔融条件(<7%),部分熔融过程中Ir,Ru和Rh表现其相容性而Pt和Pd为不相容元素.这些样品多含较高的铂族元素(PGE),其Pd/Ir和Cu/Pd比值远高于原始地幔值.部分熔融过程中有少量硫化物(约0.007%)残留于地幔源区,岩浆上升过程中则有部分岩浆达到硫饱和而分离出富集PGE的硫化物(约0.020%~0.033%).Os,Ir和Pt在结晶分异过程中形成铂族金属合金进入铬铁矿或硫化物,导致Pt和Pd的解耦及Ir含量出现很大变化.玄武质岩浆中熔离出的硫化物可能为邻近喷发通道的镁铁-超镁铁质岩体形成Cu-Ni-PGE矿床(化)提供重要的物质来源.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

报道了四川冕宁稀土矿床碳酸岩7件样品的PGE和Au含量分析结果,其含量(WB/10^-9)范围分别为Ir0.5~0.78,Ru 1.61~6.75,Rh 0.08~0.14,Pt 2.62~12.15,Pd 1.11γ3.65和Au1.24~8.61。原始地幔标准化的PGE模式呈Ru、Pt、Pd相对富集和Ir、Rh相对亏损的“燕子型”。分析认为,碳酸岩具有一定携带PGE的能力;本区碳酸岩具“燕子型”PGE配分模式可能是其源区地幔PGE配分模式的反演;深源富CO2流体交代作用原始地幔可能是形成其“燕子型”PGE配分模式主要因素。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

豆荚状铬铁矿是蛇绿岩中特有的一类矿产,按其化学成分可分为高Cr型和高Al型两种。其中的PGE主要以RuS2和Os、Ir、Ru合金等包体形式存在,或以类质同像形式进入铬铁矿晶格。两种类型的铬铁矿均表现出负倾斜型PGE配分模式,其Pt、Pd含量相近;与高Al型铬铁矿相比,高Cr型铬铁矿有更高的Os、Ir、Ru含量,部分豆荚状铬铁矿表现出Pt、Pd相对富集的平坦到正倾斜型PGE配分模式。目前对豆荚状铬铁矿PGE含量及配分模式还缺少一个统一的解释,但其PGE地球化学可为豆荚状铬铁矿的成因及构造背景解释提供更多的信息.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

利用同位素稀释-等离子体质谱(ICP-MS)方法测定了黔西水域、威宁等地的东岩区峨眉山玄武岩的铂族元素含量。结果表明,相对于原始地幔,东岩区峨眉山玄武岩的铂族元素发生了较强的分异作用,Os、Ir、Ru、Rh亏损,Pd、Pt发生富集,相对配分模式为Pd-Pt富集型;经球粒陨石及原始地幔标准化的铂族元素配分模式为向左陡倾斜型,具有陡的正斜率,Pd/Ir显著高于原始地幔、球粒陨石、原始上地幔等,而与地幔低度熔融形成的N-MORB、大陆拉斑玄武岩等接近,表明峨眉山玄武岩的物质来源为上地幔熔融程度偏低的玄武岩浆。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

长久以来,对于陨石金属相的全岩研究主要使用中子活化分析方法(INAA),该方法具有灵敏度高、无损样品及制样简单等优点,但它无法测定所有铂族元素(PGEs)。随着分析技术的发展,电感耦合等离子质谱(ICP-MS)越来越广泛地应用于地质学领域,但在地外物质的应用中研究较少。 本论文在分析方法上,首先在国内开展了球粒陨石金属相和铁陨石的主、微量元素的ICP-AES和ICP-MS实验分析方法研究,对四块球粒陨石的金属相以及四块铁陨石进行了分析,初步讨论了星云凝聚和小行星热变质中亲铁元素的变化特征,进一步揭示了星云的凝聚过程、以及铁陨石的结晶过程。对新发现的乌拉斯台铁陨石所做的研究表明,该陨石和新疆陨石可能为成对陨石。并将研究延伸到地外撞击事件的研究中,通过对浙江煤山P/T界线层的样品进行分析,对当时的生物大灭绝事件给出了合理解释。 乌拉斯台铁陨石是在我国新疆新发现的一块铁陨石,其发现地点距离新疆铁陨石(Armanty)约130公里。我们应用ICP-MS分析了乌拉斯台铁陨石(IIIE),以及新疆铁陨石(IIIE)、南丹铁陨石(IIICD)和Mundrabilla铁陨石(IIICD)的全岩组成,结果显示和参考文献有很好的一致性,证明了该分析方法的可行性。我们对乌拉斯台铁陨石进行了系统的岩石学、矿物学、以及微量元素分析,该陨石的岩石结构属于粗粒八面体,铁纹石带宽为1.2  0.2 mm。合纹石以各种微观结构大量存在于该陨石中。陨磷镍铁矿以富镍(30.5-55.5%)的形式出现在合纹石中,或者与陨硫铁,陨硫铬铁矿等共生。并通过计算获知该陨石的冷却速率约为20℃/Myr。其岩石矿物学特征和全岩组成和新疆铁陨石相似,二者都落在IIIE化学群的范围,因此,我们将乌拉斯台铁陨石划分为IIIE化学群,并初步认为和新疆铁陨石是成对陨石。同时,对吉林球粒陨石(H5)、安龙球粒陨石(H5)、以及南极陨石GRV 9919(L3)和GRV 021603(H3)四块球粒陨石金属相进行的研究显示,球粒陨石金属相的亲铁元素配分模式主要与元素的挥发性相关,具有难熔元素基本上平坦分布,而中等和强挥发性元素随其挥性的增高而趋于贫化的特征。 铂族元素的研究不仅在讨论星云凝聚过程中亲铁元素的分异、金属-硅酸盐分异与核-幔的形成,以及金属熔体的结晶分异方面有着重要的意义,对于讨论地外物质的示踪也有着重要的作用。铂族元素在地壳中高度亏损,但在大部分地外物质中富集,因此通常将Ir的异常已否作为是否有地外物质加入的重要依据之一。距今2.51亿年前的二叠纪-三叠纪(P/T界线)时期,发生了地质历史上最大规模的生物灭绝事件,然而对于该事件的诱因却一直存有争议,主要存在两种观点:“地外撞击”和“火山喷发”。我们使用锍镍火试金和同位素稀释法,结合Te共沉淀, 应用ICP-MS分析技术,对我国煤山二叠纪-三叠纪界线层的样品进行了Ir、Ru、Rh、Pt和Pd的测定。火试金方法结果显示Ir的含量为0.053 ng/g,而同位素稀释法对P/T界线事件层样品的分析结果显示,Ir的含量在0.005-0.028 ng/g,两种分析方法的结果均显示没有Ir的正异常。将PGE使用碳质球粒陨石标准化后,整个配分模式呈现出高度分异,Ir/Pd的比值为0.02-0.03CI,明显不同于各类陨石。相反,该界线层样品的PGE配分模式和西伯利亚玄武岩(甚至也可能和峨眉山玄武岩)相似,证明了该界线层样品中的PGE可能来源于玄武岩。P/T界线层样品中PGE的含量从富含黄铁矿的壳层24f向26层呈上升趋势,且在26层为最大值,然后在28层回落,这种趋势可能暗示了玄武岩最大规模的喷发可能出现在26层。该结果有力地证明了P/T界线时期的生物灭绝事件与火山喷发的相关性,给一直存有争议的二叠纪-三叠纪生物灭绝事件提供了新的证据。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

铂族元素和金银统称为贵金属,他们在石油化工、冶金、能源、地球化学、材料、环境科学、电子、航空航天、生物和医学等诸多领域中有广泛的应用。贵金属分析测试是贵金属研究与应用的必要组成部分,具有非常重要的意义。本文以铂族元素标准样品GPt-5(铬铁矿)为主要研究对象,采用阴离子交换树脂和磅共沉淀分离方法富集铂族元素,探索最佳实验条件:其次考察铂族元素的分离富集过程,探讨磅共沉泞分离富焦铂柞矛青的和理。然后通过碱熔、常压酸溶解-碱熔分解不溶物两种方法分解地质样品,在此基础上建立了电感耦奋寺离子体质谱分析钼族元素的方法,为地质地球化学样品中痕量或超痕量铂族元素含量分析提供了可行的途径,并为分析方法的进一步改进提供理论和方法依据。本文通过实验,得到以下结论:1.碲共沉淀具有操作简单,铂族元素的回收率很高能将铂族元素和贱金属彻底分离等诸多优点,便于广泛运用。2.阴离子交换树脂能很好吸附Au、R、Pd、Os、Ir(W),但对Ru、特别是Rh的回收率很低。通过在上柱前加入 SnCl_2能提高Ru、助的吸附率。3.碱熔分解能力强,操作简单,价格低廉,通过改进的分层碱熔法明显提高了Ru的准确度,对其它铂族元素没有影响;酸浸取结合碱熔对Au、Pt、Pd的分析结果较好,但是对于Ru、.Ir的结果偏低,整个流程较长。4.等离子体质谱法能快捷、精确测试铂族元素,一般用内标标准曲线法测单同位素元素Rh、Au,而用同位素稀释法测其它铂族元素。5.铂族元素经过蹄共沉淀后生成能溶于浓HNO_3和王水的产物,Au主要转化为单质Au,Pt、Pd都形成磅化物。其它铂族元素的富集机理需要进一步深入研究。